Clinical Trials Logo

Muscular Disorders, Atrophic clinical trials

View clinical trials related to Muscular Disorders, Atrophic.

Filter by:
  • Not yet recruiting  
  • Page 1

NCT ID: NCT05760066 Not yet recruiting - Atrophy, Muscular Clinical Trials

Effects of Resistance Training Preconditioning on Skeletal Muscle Recovery From a Period of Disuse in Young Adults

Start date: August 1, 2023
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to compare the effects of resistance training (RT) preconditioning vs no training on disuse-induced atrophy and post-disuse resistance training in young healthy individuals. The main questions it aims to answer are: - To determine if performing RT prior to a period of disuse enhances the regain of strength, skeletal muscle size, and skeletal muscle quality while performing RT after a period of disuse. - To determine if performing RT prior to a period of disuse dampens the maladaptive effects of disuse on muscle size, muscle quality, and strength. - To determine the anabolic and proteolytic mechanisms underpinning the observed outcomes. Participants will: 1. Perform either 6 weeks of resistance training or maintain an untrained lifestyle 2. Perform 2 weeks of limb immobilization induced disuse of a randomized leg 3. Perform 6 weeks of resistance training Researchers will compare the resistance training preconditioning condition vs the non-trained condition to see if resistance training prior to a period of disuse is beneficial during the disuse period and in the return to training period on skeletal muscle size, strength, and underpinning molecular markers.

NCT ID: NCT05093985 Not yet recruiting - Atrophy, Muscular Clinical Trials

Blood Flow Restricted Electrical Stimulation During Immobilisation

Start date: November 15, 2021
Phase: N/A
Study type: Interventional

Following injury or surgery to a limb, it is often immobilised to allow tissue healing. Short periods of disuse cause loss of muscle size and strength and impaired mechanical properties of tendons, which leads to reduced function. Strategies to combat these deconditioning adaptations include neuromuscular electrical stimulation (NMES), however at present its effectiveness is limited. Recent research suggests that the effects of NMES can be augmented with blood flow restriction (BFR). At present, the effect of combining these two techniques on muscle function during limb immobilisation is unknown. Furthermore, the impact of BFR training during retraining following immobilisation is unknown.

NCT ID: NCT01702870 Not yet recruiting - Myositis Clinical Trials

Diagnostic Accuracy of MR in Myositis

Start date: November 2012
Phase: N/A
Study type: Observational

A prospective observational study to determine the effectiveness of magnetic resonance (MR) imaging in the diagnosis and monitoring of idiopathic myopathy in adult humans.