Muscle Soreness Clinical Trial
Official title:
Effect of Acheta Domesticus Supplementation on Post-Exercise Muscle Recovery in Recreationally Active Male
The goal of this clinical trial is to test the effect of house cricket (Acheta domesticus) supplementation for strength recovery in recreationally active males. The main question[s] it aims to answer are: whether house cricket powder could improve strength recovery and whether house cricket powder could be an alternative to commonly used protein supplement. Participants will do exercise (100 drop jumps) to induce fatigue and then they will consume either isocaloric carbohydrate, whey protein isolate or defatted house cricket powder for 4 days. Their strength will be measured every 24 hours for 4 days in order to observe the recovery. Researcher will compare house cricket powder with isocaloric carbohydrate to see if the strength recovery is faster in house cricket powder group Researcher will compare house cricket powder with whey protein isolate to see if the strength recovery is comparable.
Status | Recruiting |
Enrollment | 33 |
Est. completion date | December 31, 2023 |
Est. primary completion date | November 30, 2023 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | Male |
Age group | 18 Years to 30 Years |
Eligibility | Inclusion Criteria: - 5-10 hours of exercise per week Exclusion Criteria: - smoking - drinking alcohol - history of surgical/medical procedure that could affect the study - food allergy - in medication - have participated in similar studies before |
Country | Name | City | State |
---|---|---|---|
Malaysia | Faculty of Sports and Exercise Sciences | Kuala Lumpur | Federal Territory Of Kuala Lumpur |
Lead Sponsor | Collaborator |
---|---|
University of Malaya |
Malaysia,
Abaidia AE, Delecroix B, Leduc C, Lamblin J, McCall A, Baquet G, Dupont G. Effects of a Strength Training Session After an Exercise Inducing Muscle Damage on Recovery Kinetics. J Strength Cond Res. 2017 Jan;31(1):115-125. doi: 10.1519/JSC.0000000000001479. — View Citation
Abbott W, Brett A, Cockburn E, Clifford T. Presleep Casein Protein Ingestion: Acceleration of Functional Recovery in Professional Soccer Players. Int J Sports Physiol Perform. 2019 Mar 1;14(3):385-391. doi: 10.1123/ijspp.2018-0385. Epub 2019 Feb 17. — View Citation
Agriculture Organization of the United Nations, World Health Organization, & University, U. N. (2007). Protein and amino acid requirements in human nutrition : report of a joint FAO/WHO/UNU expert consultation. World Health Organization. https://apps.who.int/iris/handle/10665/43411
Awobusuyi TD, Pillay K, Siwela M. Consumer Acceptance of Biscuits Supplemented with a Sorghum-Insect Meal. Nutrients. 2020 Mar 25;12(4):895. doi: 10.3390/nu12040895. — View Citation
Baiano A. (2020). Edible insects: an overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science & Technology. 100:35-50
Borgenvik M, Apro W, Blomstrand E. Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle. Am J Physiol Endocrinol Metab. 2012 Mar 1;302(5):E510-21. doi: 10.1152/ajpendo.00353.2011. Epub 2011 Nov 29. — View Citation
Brogan, E. N., Park, Y. L., Matak, K. E., & Jaczynski, J. (2021). Characterization of protein in cricket (Acheta domesticus), locust (Locusta migratoria), and silk worm pupae (Bombyx mori) insect powders. Lwt-Food Science and Technology, 152, Article 112314. https://doi.org/10.1016/j.lwt.2021.112314
Brown MA, Stevenson EJ, Howatson G. Whey protein hydrolysate supplementation accelerates recovery from exercise-induced muscle damage in females. Appl Physiol Nutr Metab. 2018 Apr;43(4):324-330. doi: 10.1139/apnm-2017-0412. Epub 2017 Nov 6. — View Citation
Buckley JD, Thomson RL, Coates AM, Howe PR, DeNichilo MO, Rowney MK. Supplementation with a whey protein hydrolysate enhances recovery of muscle force-generating capacity following eccentric exercise. J Sci Med Sport. 2010 Jan;13(1):178-81. doi: 10.1016/j.jsams.2008.06.007. Epub 2008 Sep 2. — View Citation
Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, Ziegenfuss T, Lopez H, Landis J, Antonio J. International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007 Aug 30;4:6. doi: 10.1186/1550-2783-4-6. No abstract available. — View Citation
Cooke MB, Rybalka E, Stathis CG, Cribb PJ, Hayes A. Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals. J Int Soc Sports Nutr. 2010 Sep 22;7:30. doi: 10.1186/1550-2783-7-30. — View Citation
Cormack SJ, Newton RU, McGuigan MR, Doyle TL. Reliability of measures obtained during single and repeated countermovement jumps. Int J Sports Physiol Perform. 2008 Jun;3(2):131-44. doi: 10.1123/ijspp.3.2.131. — View Citation
de Matos FM, Novelli PK, de Castro RJS. Enzymatic hydrolysis of black cricket (Gryllus assimilis) proteins positively affects their antioxidant properties. J Food Sci. 2021 Feb;86(2):571-578. doi: 10.1111/1750-3841.15576. Epub 2021 Jan 12. — View Citation
Eddens L, Browne S, Stevenson EJ, Sanderson B, van Someren K, Howatson G. The efficacy of protein supplementation during recovery from muscle-damaging concurrent exercise. Appl Physiol Nutr Metab. 2017 Jul;42(7):716-724. doi: 10.1139/apnm-2016-0626. Epub 2017 Feb 15. — View Citation
Etheridge T, Philp A, Watt PW. A single protein meal increases recovery of muscle function following an acute eccentric exercise bout. Appl Physiol Nutr Metab. 2008 Jun;33(3):483-8. doi: 10.1139/H08-028. — View Citation
Hansen M, Bangsbo J, Jensen J, Bibby BM, Madsen K. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners. Int J Sport Nutr Exerc Metab. 2015 Apr;25(2):97-109. doi: 10.1123/ijsnem.2014-0083. Epub 2014 Jul 14. — View Citation
Hermans WJH, Senden JM, Churchward-Venne TA, Paulussen KJM, Fuchs CJ, Smeets JSJ, van Loon JJA, Verdijk LB, van Loon LJC. Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. Am J Clin Nutr. 2021 Sep 1;114(3):934-944. doi: 10.1093/ajcn/nqab115. — View Citation
Hilkens L, De Bock J, Kretzers J, Kardinaal AFM, Floris-Vollenbroek EG, Scholtens PAMJ, Horstman AMH, van Loon LJC, van Dijk JW. Whey protein supplementation does not accelerate recovery from a single bout of eccentric exercise. J Sports Sci. 2021 Feb;39(3):322-331. doi: 10.1080/02640414.2020.1820184. Epub 2020 Oct 5. — View Citation
Kreider RB, Campbell B. Protein for exercise and recovery. Phys Sportsmed. 2009 Jun;37(2):13-21. doi: 10.3810/psm.2009.06.1705. — View Citation
Kritikos S, Papanikolaou K, Draganidis D, Poulios A, Georgakouli K, Tsimeas P, Tzatzakis T, Batsilas D, Batrakoulis A, Deli CK, Chatzinikolaou A, Mohr M, Jamurtas AZ, Fatouros IG. Effect of whey vs. soy protein supplementation on recovery kinetics following speed endurance training in competitive male soccer players: a randomized controlled trial. J Int Soc Sports Nutr. 2021 Mar 16;18(1):23. doi: 10.1186/s12970-021-00420-w. — View Citation
Navarro Del Hierro J, Gutierrez-Docio A, Otero P, Reglero G, Martin D. Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor. Food Chem. 2020 Mar 30;309:125742. doi: 10.1016/j.foodchem.2019.125742. Epub 2019 Oct 25. — View Citation
Nino MC, Reddivari L, Ferruzzi MG, Liceaga AM. Targeted Phenolic Characterization and Antioxidant Bioactivity of Extracts from Edible Acheta domesticus. Foods. 2021 Sep 28;10(10):2295. doi: 10.3390/foods10102295. — View Citation
Oonincx DG, van Itterbeeck J, Heetkamp MJ, van den Brand H, van Loon JJ, van Huis A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One. 2010 Dec 29;5(12):e14445. doi: 10.1371/journal.pone.0014445. — View Citation
Orkusz A. Edible Insects versus Meat-Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health. Nutrients. 2021 Apr 6;13(4):1207. doi: 10.3390/nu13041207. — View Citation
Osimani, A., Milanovic, V., Cardinali, F., Roncolini, A., Garofalo, C., Clementi, F., Pasquini, M., Mozzon, M., Foligni, R., Raffaelli, N., Zamporlini, F., & Aquilanti, L. (2018). Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. Innovative Food Science & Emerging Technologies, 48, 150-163. https://doi.org/https://doi.org/10.1016/j.ifset.2018.06.007
Paul, A., Frederich, M., Megido, R. C., Alabi, T., Malik, P., Uyttenbroeck, R., Francis, F., Blecker, C., Haubruge, E., Lognay, G., & Danthine, S. (2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), 337-340. https://doi.org/https://doi.org/10.1016/j.aspen.2017.02.001
Placentino U, Sogari G, Viscecchia R, De Devitiis B, Monacis L. The New Challenge of Sports Nutrition: Accepting Insect Food as Dietary Supplements in Professional Athletes. Foods. 2021 May 18;10(5):1117. doi: 10.3390/foods10051117. — View Citation
Stull VJ, Finer E, Bergmans RS, Febvre HP, Longhurst C, Manter DK, Patz JA, Weir TL. Impact of Edible Cricket Consumption on Gut Microbiota in Healthy Adults, a Double-blind, Randomized Crossover Trial. Sci Rep. 2018 Jul 17;8(1):10762. doi: 10.1038/s41598-018-29032-2. — View Citation
Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol (1985). 2009 Sep;107(3):987-92. doi: 10.1152/japplphysiol.00076.2009. Epub 2009 Jul 9. — View Citation
Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR. Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc. 2004 Dec;36(12):2073-81. doi: 10.1249/01.mss.0000147582.99810.c5. — View Citation
Trommelen J, van Loon LJ. Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training. Nutrients. 2016 Nov 28;8(12):763. doi: 10.3390/nu8120763. — View Citation
Udomsil, N., Imsoonthornruksa, S., Gosalawit, C., & Ketudat-Cairns, M. (2019). Nutritional values and functional properties of house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus). Food Science and Technology Research, 25(4), 597-605. https://doi.org/10.3136/fstr.25.597
van Huis, A., van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., Vantomme, P. (2013). Edible insects: future prospect for food and feed security. Food and Agriculture Organization of the United Nations.
Vangsoe MT, Joergensen MS, Heckmann LL, Hansen M. Effects of Insect Protein Supplementation during Resistance Training on Changes in Muscle Mass and Strength in Young Men. Nutrients. 2018 Mar 10;10(3):335. doi: 10.3390/nu10030335. — View Citation
Vangsoe MT, Thogersen R, Bertram HC, Heckmann LL, Hansen M. Ingestion of Insect Protein Isolate Enhances Blood Amino Acid Concentrations Similar to Soy Protein in A Human Trial. Nutrients. 2018 Sep 22;10(10):1357. doi: 10.3390/nu10101357. — View Citation
Wilborn CD, Taylor LW, Outlaw J, Williams L, Campbell B, Foster CA, Smith-Ryan A, Urbina S, Hayward S. The Effects of Pre- and Post-Exercise Whey vs. Casein Protein Consumption on Body Composition and Performance Measures in Collegiate Female Athletes. J Sports Sci Med. 2013 Mar 1;12(1):74-9. eCollection 2013. — View Citation
Witard OC, Jackman SR, Kies AK, Jeukendrup AE, Tipton KD. Effect of increased dietary protein on tolerance to intensified training. Med Sci Sports Exerc. 2011 Apr;43(4):598-607. doi: 10.1249/MSS.0b013e3181f684c9. — View Citation
* Note: There are 37 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Strength | Isokinetic knee extension and flexion, maximum knee isometric contraction | 72 hours | |
Primary | Power | Countermovement jump, squat jump | 72 hours | |
Primary | Pain Perception | 10 cm visual analogue scale (min 0 = no soreness, max 10 = worst imaginable muscle soreness) & 7 Points Likert Scale (min 0 = no soreness, max 6 = a severe pain that limits my ability to move) | 72 hours |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04371237 -
Accelerating Post-exercise Muscle Glycogen Resynthesis in Humans: Impact of Combined Nutrient Intake and Intermittent Pneumatic Compression or Heat Therapy
|
N/A | |
Completed |
NCT04182295 -
Does Placebo Information Affect the Trial Outcomes and Participant Blinding?
|
N/A | |
Completed |
NCT06112899 -
The Effects of Swedish Massage and Manual Lymph Drainage on Muscle Fatigue
|
N/A | |
Completed |
NCT03961022 -
Effects of ReWin(d) Supplementation on the Recovery of DOMS Induced by Acute Exercice
|
Phase 2 | |
Completed |
NCT02923102 -
Effects of Recoverben® on Recovery After Exhaustive Exercise
|
N/A | |
Completed |
NCT02945098 -
Kinesio Taping in Muscle Damage Response Induced by Eccentric Exercise
|
N/A | |
Completed |
NCT02271854 -
A Within-subject Study to Evaluate the Efficacy and Safety of Diclofenac Sodium Topical Gel 1% Compared to Placebo in Subjects Experiencing Delayed Onset Muscle Soreness
|
Phase 3 | |
Completed |
NCT01825616 -
Vitamin D2, Muscle Damage, NASCAR Pitcrew
|
N/A | |
Completed |
NCT00745771 -
Multiple Dose, Double-Blind, Placebo and Active Controlled Study of Pharmacokinetics of Diractin® as Well as Safety and Efficacy for the Treatment of Muscle Soreness
|
Phase 2 | |
Completed |
NCT05037942 -
The Effects of Restriction Pressure on Muscle Damage Responses to Blood Flow Restriction Exercise
|
N/A | |
Completed |
NCT05276986 -
Effects of Delayed Muscle Pain on Respiratory Muscle Function
|
N/A | |
Completed |
NCT05100459 -
The Effects of Whey Protein Supplements on Markers of Exercise-induced Muscle Damage in Resistance-trained Individuals
|
N/A | |
Completed |
NCT05607212 -
Lumbosacral Muscle Sensitivity & Pressure Pain Threshold After Kettlebell Swings
|
N/A | |
Completed |
NCT04742244 -
Lemon Verbena Extract Oxidative Stress and Muscle Damage
|
N/A | |
Completed |
NCT06433856 -
Neuromuscular Responses to Recovery Techniques
|
N/A | |
Not yet recruiting |
NCT04872374 -
Effects of Parmigiano Reggiano on Skeletal Muscle Damage in Older Adults
|
N/A | |
Completed |
NCT05998603 -
Pre-sleep Protein Supplementation and Load Carriage Recovery in British Army Recruits
|
N/A | |
Completed |
NCT04677985 -
Analgesic Induces Similar Upper and Lower Body Pain Pressure Threshold Increases
|
N/A | |
Recruiting |
NCT03540602 -
Polyphenol Rich Supplementation on Markers of Recovery From Intense Resistance Exercise
|
Phase 1 | |
Completed |
NCT05924139 -
Omega-3 Fatty Acid Supplementation to Enhance Performance
|
N/A |