Clinical Trials Logo

Multiple System Atrophy clinical trials

View clinical trials related to Multiple System Atrophy.

Filter by:

NCT ID: NCT05121012 Recruiting - Clinical trials for Multiple System Atrophy

Synaptic Loss in Multiple System Atrophy

Start date: September 1, 2021
Phase:
Study type: Observational

In this study the investigators would like to investigate the degree of damage of the synapses, an important part of the neurons vital for the communications between neurons, in Multiple System Atrophy (MSA).

NCT ID: NCT05109091 Active, not recruiting - Clinical trials for Multiple System Atrophy

Study of ATH434 in Participants With Multiple System Atrophy

Start date: July 1, 2022
Phase: Phase 2
Study type: Interventional

This study will assess the safety and efficacy of ATH434 in participants with Multiple System Atrophy

NCT ID: NCT05104476 Active, not recruiting - Clinical trials for Multiple System Atrophy

A Study of Lu AF82422 in Participants With Multiple System Atrophy

AMULET
Start date: November 16, 2021
Phase: Phase 2
Study type: Interventional

To find out the effect of Lu AF82422 on disease progression in participants with multiple system atrophy.

NCT ID: NCT05086094 No longer available - Clinical trials for Multiple System Atrophy (MSA)

Expanded Access Protocol of Verdiperstat in Patients With Multiple System Atrophy (MSA)

Start date: n/a
Phase:
Study type: Expanded Access

The purpose of this expanded access program is to provide access to the investigational drug verdiperstat in patients with Multiple System Atrophy (MSA). Expanded access allows patients with a serious or a life-threatening disease or condition access to an investigational drug when no satisfactory approved treatment options are available.

NCT ID: NCT05067192 Completed - Parkinson Disease Clinical Trials

Optimization of Morphomer-based Alpha-synuclein PET Tracers

Start date: July 15, 2021
Phase:
Study type: Observational

The aim of the project is to develop the first alpha-synuclein (a-syn)-specific PET tracer. The research phase will exploit ACI's proprietary MorphomerTM library and extensively optimized screening workflow. Promising PET-tracer candidates will be tested for their ability in detecting a-syn pathology in patients with a range of Parkinsonian conditions with different a-syn levels and distributions, comprising hereditary forms of PD and other synucleinopathies.

NCT ID: NCT05011773 Completed - Parkinson Disease Clinical Trials

Manipulating and Optimising Brain Rhythms for Enhancement of Sleep

MORPHEUS
Start date: August 3, 2021
Phase: N/A
Study type: Interventional

Treatment of sleep disturbances is mainly attempted through drug administration. However, certain drugs are associated with unwanted side effects or residual effects upon awakening (e.g. sleepiness, ataxia) which can increase the risks of falls and fractures. In addition, there can be systemic consequences of long-term use. An alternative method of manipulating sleep is by stimulating the brain to influence the electroencephalogram (EEG). To date, there have been mixed results from stimulating superficial areas of the brain and, as far as we know, there has been no systematic attempt to influence deep brain activity. Many patients suffering from movement disorders, such as Parkinson's Disease (PD) and Multiple Systems Atrophy (MSA), also have disrupted sleep. Currently, at stages where drug treatment no longer offers adequate control of their motor symptoms, these patients are implanted with a deep brain stimulation system. This involves depth electrodes which deliver constant pulse stimulation to the targeted area. A similar system is used in patients with severe epilepsy, as well as some patients with chronic pain. The aim of this feasibility study is to investigate whether we can improve sleep quality in patients with deep brain stimulators by delivering targeted stimulation patterns during specific stages of sleep. We will only use stimulation frequencies that have been proven to be safe for patients and frequently used for clinical treatment of their disorder. We will examine the structure and quality of sleep as well as how alert patients are when they wake up, while also monitoring physiological markers such as heart rate and blood pressure. Upon awakening, we will ask the patients to provide their subjective opinion of their sleep and complete some simple tests to see how alert they are compared to baseline condition which would be either stimulation at the standard clinical setting or no stimulation. We hope that our study will open new ways of optimising sleep without the use of drugs, in patients who are implanted with depth electrodes. We also believe that our findings will broaden the understanding of how the activity of deep brain areas influences sleep and alertness.

NCT ID: NCT04965922 Recruiting - Clinical trials for Multiple System Atrophy

Quality of Life of Caregivers and Patients Suffering From Multiple System Atrophy

QUA2-AMS
Start date: July 1, 2021
Phase: N/A
Study type: Interventional

Multiple system atrophy (MSA) is a rare and fatal neurodegenerative disorder that cause as other neurodegenerative diseases profound declines in functioning and thus, require caregiving for assistance with daily living. The aim of the study is to evaluate the effect of a multimodal intervention as proposed by the NYU Caregiver Counseling and Support Intervention (NYUCI) on the quality of life of patients and their caregivers.

NCT ID: NCT04925622 Completed - Parkinson Disease Clinical Trials

Complex Eye Movements in Parkinson's Disease and Related Movement Disorders

Start date: January 4, 2021
Phase:
Study type: Observational [Patient Registry]

Diagnosing Parkinson's disease (PD) depends on the clinical history of the patient and the patient's response to specific treatments such as levodopa. Unfortunately, a definitive diagnosis of PD is still limited to post-mortem evaluation of brain tissues. Furthermore, diagnosis of idiopathic PD is even more challenging because symptoms of PD overlap with symptoms of other conditions such as essential tremor (ET) or Parkinsonian syndromes (PSs) such as progressive supranuclear palsy (PSP), multiple system atrophy (MSA), corticobasal degeneration (CBD), or vascular Parkinsonism (VaP). Based on the principle that PD and PSs affect brain areas involved in eye movement control, this trial will utilize a platform that records complex eye movements and use a proprietary algorithm to characterize PSs. Preliminary data demonstrate that by monitoring oculomotor alterations, the process can assign PD-specific oculomotor patterns, which have the potential to serve as a diagnostic tool for PD. This study will evaluate capabilities of the process and its ability to differentiate PD from other PSs with statistical significance. The specific aims of this proposal are: To optimize the detection and analysis algorithms, and then to evaluate the process against neurological diagnoses of PD patients in a clinical study.

NCT ID: NCT04920552 Recruiting - Parkinson Disease Clinical Trials

Abdominal Binders to Treat Orthostatic Hypotension in Parkinsonian Syndromes

ABOH-PS
Start date: May 17, 2021
Phase: N/A
Study type: Interventional

The purpose of the present clinical trial is to determine whether the use of an elastic abdominal binder is effective in the non-pharmacological management of symptomatic, neurogenic orthostatic hypotension (OH) in individuals suffering from Parkinson's disease (PD) or Parkinson variant multiple system atrophy (MSA-P).

NCT ID: NCT04876326 Recruiting - Clinical trials for Multiple System Atrophy

Potential Use of Autologous and Allogeneic Mesenchymal Stem Cells in Patients With Multiple System Atrophy

Start date: October 5, 2020
Phase: N/A
Study type: Interventional

The prevalence of Multiple System Atrophy (MSA) is reported to be between 3.4 - 4.9 cases per 100,000 population. The estimated average incidence is 0.6 - 0.7 cases per 100,000 people per year. Many patients are not diagnosed properly during their lifetime because of the difficulty in differentiating MSA from other disorders. Approximately 29 - 33% of patients with isolated late onset cerebellar ataxia and 8 - 10% of patients with parkinsonism will develop MSA. There are currently no therapies that can cure or stop the progression of the disease. The current pharmacological therapy is only to relieve symptoms. Mesenchymal stem cells (MSC) are considered an efficient source of cells for therapy, because they can be safely harvested and transplanted to donors or patients, have low immunogenicity, and have broad therapeutic potential. Results from preliminary preclinical and clinical trials indicate the potential of MSC-based treatment in meeting several key aspects of neurodegeneration. Stem cell-based therapy for neurodegenerative diseases aims to stop clinical damage by regenerating and by providing local support for damaged tissue, in addition after transplantation, MSCs have been shown to be capable of penetrating the lesion area and thus have great potential use as a means of administering therapeutic agents. The subjects of this study were patients who experienced possible MSA based on the consensus clinical criteria for MSA. There will be three treatment groups with a total sample of 5 subjects each. Group 1 will receives MSC-Adipose Autologous with doses 2x50 million cells intratechally. Group 2 will receives MSC-Umbilical Cord Allogeneic with doses 2x 50 million cells intratechally. Group 3 will receives MSC-Umbilical Cord Allogeneic with doses 2x50 million cells intratechally and 2x10cc secretome MSC from Adipose Intravenously. Clinical improvement will be evaluated using the UMSARS scale, PET-Scans, MRI, DaTScan, IGF-1, BDNF, Sympathetic skin respons (SSR), EMG, Composite Autonomic Severity Score (CASS), High definition-Optical coherence tomography (HD-OCT), ERG, VEP, Log MAR chart, Ishihara test and side adverse effect on MSC. This study is divided into six timeframes : Before an implantation, First Month after second implantation, Third month after secondary implantation, Sixth month after second implantation, Ninth month after second implantation and Twelve month after second implantation. The differences between the test variables are then used as an indicator to assess clinical improvement within the subjects.