View clinical trials related to Multiple System Atrophy.
Filter by:The goal of this observational study is to learn about the impact of the different types of pain and of the domains involved in the autonomic disorders of inpatients and outpatients diagnosed with Parkinson disease (PD) and multiple system atrophy (MSA) admitted to Istituti Clinici Scientifici Maugeri Centers. The main aims are: Evaluate the prevalence of pain and characterize it in Parkinson's disease and atypical parkinsonisms (MSA) Evaluate the effect of rehabilitation on pain and autonomic symptoms Evaluate the prevalence of autonomic symptoms in Parkinson's disease and atypical parkinsonisms (MSA) Assess the impact of pain and autonomic symptoms on quality of life. Participants will perform neurological examination, rehabilitation program and clinical scales. Researchers will compare the two groups of patients (PD and MSA) and the effect of the rehabilitation on pain, autonomic symptoms and quality of life.
Purpose of this phase 1/2a study is to assess the safety and efficacy of intrathecal administration of allogeneic human oral mucosa stem cells (hOMSCs) in patients suffering from early to moderate stage Multiple System Atrophy (MSA) .
This is a Phase 3, multi-center, randomized withdrawal study to evaluate the efficacy and durability of ampreloxetine in participants with MSA and symptomatic nOH after 20 weeks of treatment. This study includes 4 periods: Screening, open label, randomized withdrawal, and long-term treatment extension (LTE).
This trial will the efficacy of KM-819 compared to placebo in subjects with MSA for slowing the progression of MSA.
Study Rationale: No accurate tests currently exist to diagnose Parkinson's disease (PD) and the conditions which mimic it (atypical parkinsonism) at a very early stage. Similarly there are no accurate ways to track how these diseases progress in a very precise manner. Recording eye movements and pupils may be a very sensitive way of doing this and may contain important information about a patient's diagnosis and their cognitive and motor function. Hypothesis: We hypothesize that measuring eye movements and pupil changes while people watch short video clips will differentiate PD and atypical parkinsonism at an early stage. We hypothesize that eye movements and pupil changes will be able to track how a person's disease changes over time and could even predict their disease course from the start. Before we can do this, we need to be able to accurately differentiate between PD and atypical parkinsonism and see how eye movements vary among people with the same disease. Study Design: We will ask a large number of people with PD and atypical parkinsonism to watch very brief video clips while we record eye movements and pupil responses. This is like changing the television channel every few seconds and observing what happens to a person's eyes as they search the new clip. We will compare these results between different disease groups and correlate them with clinical features of PD and atypical parkinsonism. Impact on Diagnosis/Treatment of Parkinson's disease: This may have enormous impact in the assessment of people with PD. It may become an important diagnostic tool, a prognostic marker at the early stage of disease, as well as providing the ability to track disease progression in clinical trials. Next Steps for Development: Once we can demonstrate that eye tracking can differentiate these conditions, we will follow a large number of patients to see how their eye movements and pupils change over time with their disease. If this is a reliable way to track disease it could be used to measure disease progression in these conditions and response to treatment.
This is a Phase 1b study to determine the safety, tolerability, and immunogenicity of UB-312 in participants with multiple system atrophy (MSA), and in participants with Parkinson's disease (PD). UB-312 is a UBITh®-enhanced synthetic peptide-based vaccine and may provide an active immunotherapy option for treating synucleinopathies including the most prevalent form, PD; and the most rapidly progressive form, MSA.
This is a longitudinal, triple-blind, randomized-controlled, prospective observational study assessing patients with cerebellar ataxia, including spinocerebellar ataxia type 3 (SCA3) and multiple system atrophy-cerebellar type (MSA-C), to examine the efficacy, safety, and tolerability of transcranial alternating current stimulation (tACS) for up to 3 months.
The main aim is to see how TAK-341 works after 52 weeks in participants with multiple system atrophy as measured by the Unified Multiple System Atrophy Rating Scale Part I (UMSARS). The study will enroll approximately 138 patients. Participants will receive a total of 13 intravenous infusions every 4 weeks approximately, these may be either of TAK-341 or placebo, after each infusion some blood samplings will be taken and other assessments completed. This trial will be conducted in North America, Europe and Asia.
This study aims to learn about the effects of continuous positive airway pressure (CPAP) on people with autonomic failure and high blood pressure when lying down (supine hypertension) to determine if it can be used to treat their high blood pressure during the night. CPAP (a widely used treatment for sleep apnea) involves using a machine that blows air into a tube connected to a mask covering the nose, or nose and mouth, to apply a low air pressure in the airways. The study includes 3-5 days spent in the Vanderbilt Clinical Research Center (CRC): at least one day of screening tests, followed by up to 3 study days. Subjects may be able to participate in daytime and/or overnight studies. The Daytime study consists of 2 study days: one with active CPAP and one with sham CPAP applied for up to 2 hours. The Overnight study consists of 3 study nights: one with active CPAP, one with sham CPAP, both applied for up to 9 hours and one night sleeping with the bed tilted head-up.
The purpose of this protocol is to create an active natural history cohort of patients with degenerative movement disorders, tracked in a clinical setting with clinical rating scales and neuroimaging. The overarching rationale is that neurodegenerative diseases may be heterogeneous, complex disorders. A new way of performing clinical trials in these patients may be in order and this protocol aims to build a longitudinally tracked clinical trial-ready cohort of patients. The purpose of this protocol is to establish an active natural history cohort of patients with neurodegenerative movement disorders who are deeply phenotyped and "clinical trial ready" across Mass General Brigham. After a thorough clinical diagnostic evaluation (this may include clinically indicated testing, for example MRI, FDG-PET, MIBG scan, polysomnography, genetic testing, autonomic function tests, inflammatory tests, skin biopsy) the investigators aim to achieve this through: 1. Longitudinal tracking of clinical progression through use of clinical scales including at the present time: UMSARS, BARS, MoCA and UPSIT, PROM, MDS-NMS, UPDRS, and SARA 2. Longitudinal tracking of disease progression through use of neuroimaging including at the present time: TSPO-PET and 3D MRI (see section 1.3) This is a pilot study designed to track patients with neurodegenerative movement disorders across Mass General Brigham through MRI and PET imaging modalities and clinical measures. Figure 5 represents the study design in detail. In short, subjects will be asked to visit Mass General Brigham every 6-9 months over the course of 18 months for imaging and clinical evaluation.