View clinical trials related to Motor Deficit.
Filter by:Force generation and force level control are important neuromuscular control mechanism for successful execution of movement for our daily activities. Impaired force level control is a major deficit of motor control in people with stroke. Electromyographic biofeedback (EMG biofeedback) has been suggested by researchers and clinicians to be a useful and effective tool for enhancing control of force level during motor skill learning for people with stroke. Based on the concept of motor-skill learning, practice with variable force levels may be more effective than practice with a constant force level to enhance movement performance. The EMG biofeedback provides a suitable tool for such practice of force level control and hence for motor skill learning. However, research literatures thus far have yet to provide convincing evidences to support this claim. Neural imaging studies have shown corresponding brain reorganization and neural plasticity following physical practice of movement skills in people with stroke. It is curious whether EMG biofeedback augmented physical practice of motor skills enhances brain reorganization. Using brain mapping techniques, in particular, the transcranial magnetic stimulation (TMS), we could investigate neural plasticity accompanying motor function changes induced by physical training, and hence may help to develop safer and more effective training parameters. The purpose of this study is to examine the effects of variable practiced EMG biofeedback training emphasized on force level control of the ankle muscle on balance and gait performance and the corresponding changes of corticospinal excitability using TMS in people with chronic stroke.