Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT04802707
Other study ID # 2021-7654 dC-dT-MDS
Secondary ID
Status Recruiting
Phase Phase 2
First received
Last updated
Start date October 18, 2021
Est. completion date June 30, 2026

Study information

Verified date March 2024
Source McGill University Health Centre/Research Institute of the McGill University Health Centre
Contact Kenneth Alexis MD Myers, MD PhD FRCPC
Phone 514-934-1934
Email kenneth.myers@mcgill.ca
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a genetically and clinically heterogeneous group of autosomal recessive disorders that are characterized by a severe reduction in mtDNA content leading to impaired energy production in affected tissues and organs. MDS are due to defects in mtDNA maintenance caused by mutations in nuclear genes that function in either mitochondrial nucleotide synthesis. MDS are phenotypically heterogeneous and usually classified as myopathic, encephalomyopathic, hepatocerebral or neurogastrointestinal. No efficacious therapy is available for any of these disorders. Affected individuals should have a comprehensive evaluation to assess the degree of involvement of different systems. Treatment is directed mainly toward providing symptomatic management. No treatment for MDS. Clinical trials studies and in vitro/in vivo research studies showed that the enhancement of the salvage pathway by increasing the availability of deoxyribonucleosides needed for each specific genetic defect prevents mtDNA depletion. Early recognition and immediate therapy to restore mitochondrial function could potentially improve clinical course. Confirming the benefit of deoxynucleosides as a safe and potentially efficacious therapy, will lead to the availability of the first specific and effective treatment for Mitochondria Depletion Disorders. In this phase II Trial a mix of Deoxynucleosides Pyrimidine (Deoxycytidine dC and Deoxythymidine dT) will be used as early treatment of MDS. The dose used has been already used in other clinical trials, and appears to effective and well-tolerated. The subjects included are children (0-18Y), with positive MDS diagnosis and express mutations in one of the following genes: POLG, C10orf2, RRM2B, MPV17, SUCLA2, SUCLG1, FBXL4. Subjects with MDS expressing neurological phenotypes dysfunction.


Description:

This Trial is designed as Phase II, Monocenter, Open label study in the pediatric population. The aim is to evaluate the safety, tolerability and efficacy of Deoxycytidine and Deoxythymidine in treatment of children with Mitochondrial Depletion Disorders. Primary Objectives The primary objective of this study is to evaluate the efficacy of dC/dT100-400 in subjects with mitochondria depletion disorders. Secondary Objectives The secondary objectives of this study are to evaluate tolerability and safety of dC/dT100-400 in subjects with mitochondria depletion disorders. First Outcome Efficacy of dC/dT100-400 : 1. Neurological improvement by electroencephalography (EEG), seizure diary, development and quality of life, clinical status observed during the neurological follow-up. 2. Improved clinical status observed during the genetic follow-up and the Newcastle Paediatric Mitochondrial Disease Scale (NPMDS), which are forms used by geneticist to allow evaluation of the progression of mitochondrial disease in patients less than 18 years of age. 3. Bloodwork for different assessments: liver function (aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), bilirubin and albumin.), kidney function (creatinine, urea, electrolytes). Assess for myopathy with serum creatine kinase (CK). Evaluation of mitochondrial function with capillary/venous blood gas, serum lactate, plasma amino acids, acylcarnitine profile, urine amino acids, urine purines and pyrimidines acids, and growth differentiation factor 15 (GDF15; a marker of severity of mitochondria dysfunction). Secondary Outcome - Safety and tolerability will be tested by recording adverse effects (AE): AE will be monitored and collected throughout the study. 1. Diarrhea: Reported diarrhea frequency during the treatment, will permit to define the tolerability of dC/dT100-400. 2. AE leading to study drug discontinuation, treatment-emergent adverse events (TEAEs), SAEs (Severe Adverse Effect) will be reported from the first day the subjects start taking medication until the last dose taken.


Recruitment information / eligibility

Status Recruiting
Enrollment 50
Est. completion date June 30, 2026
Est. primary completion date December 31, 2025
Accepts healthy volunteers No
Gender All
Age group 1 Month to 60 Years
Eligibility Inclusion Criteria: - Children & Adults (0 -60 Y) - Written informed consent obtained, - Clinical Diagnosis of a Mitochondrial Depletion Disorder. - Pathogenic variant(s) in one of the following genes: POLG, C10orf2, RRM2B, MPV17, SUCLA2, SUCLG1, FBXL4 - Females of childbearing age: Negative urinary pregnancy test at screening Agree to use effective contraception for the duration of the study Exclusion Criteria: - Inability of a parent or legal guardian to give informed consent for any reason - Chronic severe diarrhea

Study Design


Related Conditions & MeSH terms


Intervention

Combination Product:
deoxycytidine and deoxythymidine
The Investigational Product (IP) dC/dT100-400 will be administered orally every day (QD) and the dose is divided over 3 taking/day for the daily dose of 100 mg/kg from Day 1-7, 200 mg/kg from Day 8-14, 300 mg/kg from Day 15- 21 and 400 mg/kg from Day 22 to 730. Doses was chosen according to the safety and efficacy doses used in the literature.

Locations

Country Name City State
Canada Research InstituMcGill University Health Centre - Children Hospital of Montreal Montréal Quebec

Sponsors (1)

Lead Sponsor Collaborator
McGill University Health Centre/Research Institute of the McGill University Health Centre

Country where clinical trial is conducted

Canada, 

References & Publications (66)

Absalon MJ, Harding CO, Fain DR, Li L, Mack KJ. Leigh syndrome in an infant resulting from mitochondrial DNA depletion. Pediatr Neurol. 2001 Jan;24(1):60-3. doi: 10.1016/s0887-8994(00)00226-5. — View Citation

Akanuma J. [Mitochondrial DNA depletion syndrome]. Nihon Rinsho. 2002 Apr;60 Suppl 4:398-401. No abstract available. Japanese. — View Citation

Akman HO, Dorado B, Lopez LC, Garcia-Cazorla A, Vila MR, Tanabe LM, Dauer WT, Bonilla E, Tanji K, Hirano M. Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance. Hum Mol Genet. — View Citation

Almannai M, Dai H, El-Hattab AW, Wong LJC. FBXL4-Related Encephalomyopathic Mitochondrial DNA Depletion Syndrome. 2017 Apr 6. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(R) [Internet]. Seatt — View Citation

Anagnostou ME, Ng YS, Taylor RW, McFarland R. Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG) gene: A clinical and molecular genetic review. Epilepsia. 2016 Oct;57(10):1531-1545. doi: 10.1111/epi.13508. Epub 2016 Aug 24. — View Citation

Ashley N, Adams S, Slama A, Zeviani M, Suomalainen A, Andreu AL, Naviaux RK, Poulton J. Defects in maintenance of mitochondrial DNA are associated with intramitochondrial nucleotide imbalances. Hum Mol Genet. 2007 Jun 15;16(12):1400-11. doi: 10.1093/hmg/d — View Citation

Basel D. Mitochondrial DNA Depletion Syndromes. Clin Perinatol. 2020 Mar;47(1):123-141. doi: 10.1016/j.clp.2019.10.008. Epub 2019 Oct 31. — View Citation

Blazquez-Bermejo C, Carreno-Gago L, Molina-Granada D, Aguirre J, Ramon J, Torres-Torronteras J, Cabrera-Perez R, Martin MA, Dominguez-Gonzalez C, de la Cruz X, Lombes A, Garcia-Arumi E, Marti R, Camara Y. Increased dNTP pools rescue mtDNA depletion in hum — View Citation

Bory C, Chantin C, Boulieu R. Abnormal purine and pyrimidine metabolism in inherited superactivity of PRPP synthetase. Adv Exp Med Biol. 1994;370:15-8. doi: 10.1007/978-1-4615-2584-4_4. No abstract available. — View Citation

Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, Aubert S, Chretien D, de Lonlay P, Paquis-Flucklinger V, Arakawa H, Nakamura Y, Munnich A, Rotig A. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA — View Citation

Bulst S, Holinski-Feder E, Payne B, Abicht A, Krause S, Lochmuller H, Chinnery PF, Walter MC, Horvath R. In vitro supplementation with deoxynucleoside monophosphates rescues mitochondrial DNA depletion. Mol Genet Metab. 2012 Sep;107(1-2):95-103. doi: 10.1 — View Citation

Camara Y, Gonzalez-Vioque E, Scarpelli M, Torres-Torronteras J, Marti R. Feeding the deoxyribonucleoside salvage pathway to rescue mitochondrial DNA. Drug Discov Today. 2013 Oct;18(19-20):950-7. doi: 10.1016/j.drudis.2013.06.009. Epub 2013 Jun 28. — View Citation

Castellanos M, Wilson DB, Shuler ML. A modular minimal cell model: purine and pyrimidine transport and metabolism. Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6681-6. doi: 10.1073/pnas.0400962101. Epub 2004 Apr 16. — View Citation

Cohen, B.H., P.F. Chinnery, and W.C. Copeland, POLG-Related Disorders, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).

Copeland WC. Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol. 2012 Jan-Feb;47(1):64-74. doi: 10.3109/10409238.2011.632763. — View Citation

Copeland WC. Defects of mitochondrial DNA replication. J Child Neurol. 2014 Sep;29(9):1216-24. doi: 10.1177/0883073814537380. Epub 2014 Jun 30. — View Citation

Dalla Rosa I, Camara Y, Durigon R, Moss CF, Vidoni S, Akman G, Hunt L, Johnson MA, Grocott S, Wang L, Thorburn DR, Hirano M, Poulton J, Taylor RW, Elgar G, Marti R, Voshol P, Holt IJ, Spinazzola A. MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow — View Citation

DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003 Jun 26;348(26):2656-68. doi: 10.1056/NEJMra022567. No abstract available. — View Citation

Dominguez-Gonzalez C, Madruga-Garrido M, Mavillard F, Garone C, Aguirre-Rodriguez FJ, Donati MA, Kleinsteuber K, Marti I, Martin-Hernandez E, Morealejo-Aycinena JP, Munell F, Nascimento A, Kalko SG, Sardina MD, Alvarez Del Vayo C, Serrano O, Long Y, Tu Y, — View Citation

El-Hattab AW, Craigen WJ, Scaglia F. Mitochondrial DNA maintenance defects. Biochim Biophys Acta Mol Basis Dis. 2017 Jun;1863(6):1539-1555. doi: 10.1016/j.bbadis.2017.02.017. Epub 2017 Feb 16. — View Citation

El-Hattab AW, Craigen WJ, Wong LJC, Scaglia F. Mitochondrial DNA Maintenance Defects Overview. 2018 Mar 8. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(R) [Internet]. Seattle (WA): University — View Citation

El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics. 2013 Apr;10(2):186-98. doi: 10.1007/s13311-013-0177-6. — View Citation

El-Hattab AW, Scaglia F. SUCLA2-Related Mitochondrial DNA Depletion Syndrome, Encephalomyopathic Form with Methylmalonic Aciduria. 2009 May 26 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, e — View Citation

El-Hattab AW, Wang J, Dai H, Almannai M, Staufner C, Alfadhel M, Gambello MJ, Prasun P, Raza S, Lyons HJ, Afqi M, Saleh MAM, Faqeih EA, Alzaidan HI, Alshenqiti A, Flore LA, Hertecant J, Sacharow S, Barbouth DS, Murayama K, Shah AA, Lin HC, Wong LC. MPV17- — View Citation

El-Hattab, A.W., et al., MPV17-Related Mitochondrial DNA Maintenance Defect, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).

Engelsen BA, Tzoulis C, Karlsen B, Lillebo A, Laegreid LM, Aasly J, Zeviani M, Bindoff LA. POLG1 mutations cause a syndromic epilepsy with occipital lobe predilection. Brain. 2008 Mar;131(Pt 3):818-28. doi: 10.1093/brain/awn007. Epub 2008 Jan 30. — View Citation

Filosto M, Scarpelli M, Tonin P, Lucchini G, Pavan F, Santus F, Parini R, Donati MA, Cotelli MS, Vielmi V, Todeschini A, Canonico F, Tomelleri G, Padovani A, Rovelli A. Course and management of allogeneic stem cell transplantation in patients with mitocho — View Citation

Franzolin E, Salata C, Bianchi V, Rampazzo C. The Deoxynucleoside Triphosphate Triphosphohydrolase Activity of SAMHD1 Protein Contributes to the Mitochondrial DNA Depletion Associated with Genetic Deficiency of Deoxyguanosine Kinase. J Biol Chem. 2015 Oct — View Citation

Gandhi VV, Samuels DC. A review comparing deoxyribonucleoside triphosphate (dNTP) concentrations in the mitochondrial and cytoplasmic compartments of normal and transformed cells. Nucleosides Nucleotides Nucleic Acids. 2011 May;30(5):317-39. doi: 10.1080/ — View Citation

Gonzalez-Vioque E, Torres-Torronteras J, Andreu AL, Marti R. Limited dCTP availability accounts for mitochondrial DNA depletion in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). PLoS Genet. 2011 Mar;7(3):e1002035. doi: 10.1371/journal.pgen — View Citation

Hasselmann O, Blau N, Ramaekers VT, Quadros EV, Sequeira JM, Weissert M. Cerebral folate deficiency and CNS inflammatory markers in Alpers disease. Mol Genet Metab. 2010 Jan;99(1):58-61. doi: 10.1016/j.ymgme.2009.08.005. — View Citation

Hernandez-Voth A, Sayas Catalan J, Corral Blanco M, Castano Mendez A, Martin MA, De Fuenmayor Fernandez de la Hoz C, Villena Garrido V, Dominguez-Gonzalez C. Deoxynucleoside therapy for respiratory involvement in adult patients with thymidine kinase 2-def — View Citation

Hikmat O, Eichele T, Tzoulis C, Bindoff LA. Understanding the Epilepsy in POLG Related Disease. Int J Mol Sci. 2017 Aug 24;18(9):1845. doi: 10.3390/ijms18091845. — View Citation

Hikmat O, Tzoulis C, Chong WK, Chentouf L, Klingenberg C, Fratter C, Carr LJ, Prabhakar P, Kumaraguru N, Gissen P, Cross JH, Jacques TS, Taanman JW, Bindoff LA, Rahman S. Correction: The clinical spectrum and natural history of early-onset diseases due to — View Citation

Hirano M, Marti R, Casali C, Tadesse S, Uldrick T, Fine B, Escolar DM, Valentino ML, Nishino I, Hesdorffer C, Schwartz J, Hawks RG, Martone DL, Cairo MS, DiMauro S, Stanzani M, Garvin JH Jr, Savage DG. Allogeneic stem cell transplantation corrects biochem — View Citation

Horvath R, Hudson G, Ferrari G, Futterer N, Ahola S, Lamantea E, Prokisch H, Lochmuller H, McFarland R, Ramesh V, Klopstock T, Freisinger P, Salvi F, Mayr JA, Santer R, Tesarova M, Zeman J, Udd B, Taylor RW, Turnbull D, Hanna M, Fialho D, Suomalainen A, Z — View Citation

Huang CC, Hsu CH. [Mitochondrial disease and mitochondrial DNA depletion syndromes]. Acta Neurol Taiwan. 2009 Dec;18(4):287-95. Chinese. — View Citation

Keshavan N, Abdenur J, Anderson G, Assouline Z, Barcia G, Bouhikbar L, Chakrapani A, Cleary M, Cohen MC, Feillet F, Fratter C, Hauser N, Jacques T, Lam A, McCullagh H, Phadke R, Rotig A, Sharrard M, Simon M, Smith C, Sommerville EW, Taylor RW, Yue WW, Rah — View Citation

Khan I, Sarker SJ, Hackshaw A. Smaller sample sizes for phase II trials based on exact tests with actual error rates by trading-off their nominal levels of significance and power. Br J Cancer. 2012 Nov 20;107(11):1801-9. doi: 10.1038/bjc.2012.444. — View Citation

Khan NA, Govindaraj P, Meena AK, Thangaraj K. Mitochondrial disorders: challenges in diagnosis & treatment. Indian J Med Res. 2015 Jan;141(1):13-26. doi: 10.4103/0971-5916.154489. — View Citation

Kollberg G, Darin N, Benan K, Moslemi AR, Lindal S, Tulinius M, Oldfors A, Holme E. A novel homozygous RRM2B missense mutation in association with severe mtDNA depletion. Neuromuscul Disord. 2009 Feb;19(2):147-50. doi: 10.1016/j.nmd.2008.11.014. Epub 2009 — View Citation

Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshe SL, Perucca E, Wiebe S, French J. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. — View Citation

Lara MC, Valentino ML, Torres-Torronteras J, Hirano M, Marti R. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): biochemical features and therapeutic approaches. Biosci Rep. 2007 Jun;27(1-3):151-63. doi: 10.1007/s10540-007-9043-2. — View Citation

Lara MC, Weiss B, Illa I, Madoz P, Massuet L, Andreu AL, Valentino ML, Anikster Y, Hirano M, Marti R. Infusion of platelets transiently reduces nucleoside overload in MNGIE. Neurology. 2006 Oct 24;67(8):1461-3. doi: 10.1212/01.wnl.0000239824.95411.52. Epu — View Citation

Lim A, Thomas RH. The mitochondrial epilepsies. Eur J Paediatr Neurol. 2020 Jan;24:47-52. doi: 10.1016/j.ejpn.2019.12.021. Epub 2020 Jan 7. — View Citation

Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res. 2003 Jun 1;31(11):e61. do — View Citation

Milone M, Benarroch EE, Wong LJ. POLG-related disorders: defects of the nuclear and mitochondrial genome interaction. Neurology. 2011 Nov 15;77(20):1847-52. doi: 10.1212/WNL.0b013e318238863a. No abstract available. — View Citation

Nogueira C, Almeida LS, Nesti C, Pezzini I, Videira A, Vilarinho L, Santorelli FM. Syndromes associated with mitochondrial DNA depletion. Ital J Pediatr. 2014 Apr 3;40:34. doi: 10.1186/1824-7288-40-34. — View Citation

Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012 Dec;26(6):711-23. doi: 10.1016/j.beem.2012.05.003. Epub 2012 Jun 23. — View Citation

Purine and pyrimidine metabolism. Ciba Found Symp. 1977;(48):331-55. No abstract available. — View Citation

Rahman S, Copeland WC. POLG-related disorders and their neurological manifestations. Nat Rev Neurol. 2019 Jan;15(1):40-52. doi: 10.1038/s41582-018-0101-0. — View Citation

Rahman S, Poulton J. Diagnosis of mitochondrial DNA depletion syndromes. Arch Dis Child. 2009 Jan;94(1):3-5. doi: 10.1136/adc.2008.147983. No abstract available. — View Citation

Rodriguez MC, MacDonald JR, Mahoney DJ, Parise G, Beal MF, Tarnopolsky MA. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve. 2007 Feb;35(2):235-42. doi: 10.1002/mus.20688. — View Citation

Rusecka J, Kaliszewska M, Bartnik E, Tonska K. Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. J Appl Genet. 2018 Feb;59(1):43-57. doi: 10.1007/s13353-017-0424-3. Epub 2018 Jan 17. — View Citation

Saada A. Deoxyribonucleotides and disorders of mitochondrial DNA integrity. DNA Cell Biol. 2004 Dec;23(12):797-806. doi: 10.1089/dna.2004.23.797. — View Citation

Saito K, Kimura N, Oda N, Shimomura H, Kumada T, Miyajima T, Murayama K, Tanaka M, Fujii T. Pyruvate therapy for mitochondrial DNA depletion syndrome. Biochim Biophys Acta. 2012 May;1820(5):632-6. doi: 10.1016/j.bbagen.2011.08.006. Epub 2011 Aug 11. — View Citation

Shaibani A, Shchelochkov OA, Zhang S, Katsonis P, Lichtarge O, Wong LJ, Shinawi M. Mitochondrial neurogastrointestinal encephalopathy due to mutations in RRM2B. Arch Neurol. 2009 Aug;66(8):1028-32. doi: 10.1001/archneurol.2009.139. — View Citation

Spinazzola A, Invernizzi F, Carrara F, Lamantea E, Donati A, Dirocco M, Giordano I, Meznaric-Petrusa M, Baruffini E, Ferrero I, Zeviani M. Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis. 2009 Apr;32(2):143-58 — View Citation

Spinazzola A, Zeviani M. Disorders from perturbations of nuclear-mitochondrial intergenomic cross-talk. J Intern Med. 2009 Feb;265(2):174-92. doi: 10.1111/j.1365-2796.2008.02059.x. — View Citation

Suomalainen A, Isohanni P. Mitochondrial DNA depletion syndromes--many genes, common mechanisms. Neuromuscul Disord. 2010 Jul;20(7):429-37. doi: 10.1016/j.nmd.2010.03.017. Epub 2010 May 4. — View Citation

Uusimaa J, Evans J, Smith C, Butterworth A, Craig K, Ashley N, Liao C, Carver J, Diot A, Macleod L, Hargreaves I, Al-Hussaini A, Faqeih E, Asery A, Al Balwi M, Eyaid W, Al-Sunaid A, Kelly D, van Mourik I, Ball S, Jarvis J, Mulay A, Hadzic N, Samyn M, Bake — View Citation

Viscomi C, Zeviani M. MtDNA-maintenance defects: syndromes and genes. J Inherit Metab Dis. 2017 Jul;40(4):587-599. doi: 10.1007/s10545-017-0027-5. Epub 2017 Mar 21. — View Citation

Wang L. Mitochondrial purine and pyrimidine metabolism and beyond. Nucleosides Nucleotides Nucleic Acids. 2016 Dec;35(10-12):578-594. doi: 10.1080/15257770.2015.1125001. — View Citation

Wong LJ, Naviaux RK, Brunetti-Pierri N, Zhang Q, Schmitt ES, Truong C, Milone M, Cohen BH, Wical B, Ganesh J, Basinger AA, Burton BK, Swoboda K, Gilbert DL, Vanderver A, Saneto RP, Maranda B, Arnold G, Abdenur JE, Waters PJ, Copeland WC. Molecular and cli — View Citation

Yavuz H, Ozel A, Christensen M, Christensen E, Schwartz M, Elmaci M, Vissing J. Treatment of mitochondrial neurogastrointestinal encephalomyopathy with dialysis. Arch Neurol. 2007 Mar;64(3):435-8. doi: 10.1001/archneur.64.3.435. — View Citation

Zipursky A. The genetics of childhood disease and development. Pediatr Res. 2003 Jan;53(1):3. doi: 10.1203/00006450-200301000-00003. No abstract available. — View Citation

* Note: There are 66 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Rate of Responder versus Non-Responder Status with investigational product "Responder" defined as having = 2 of (1) electroencephalography EEG improvement, (2) decreased seizure frequency, (3) cognitive improvement, (4) caregiver impression of improvement, (5) clinical improvement, (6) Normal Organics and Metabolism functions Description of the primary variable(s) The primary efficacy endpoint is the composite cluster of the first occurrence, over the duration of study, of Mitochondria Depletion Syndrome. 104 weeks
Secondary Number of participants experiencing dose-limiting toxicities, adverse events (AEs), serious adverse events (SAEs) Safety profile will be assessed through number of participants experiencing adverse events (AEs), serious adverse events (SAEs), laboratory evaluations, vital signs, and physical examinations. 104 weeks
See also
  Status Clinical Trial Phase
Completed NCT03388528 - Low Residue Diet Study in Mitochondrial Disease N/A
Completed NCT04378075 - A Study to Evaluate Efficacy and Safety of Vatiquinone for Treating Mitochondrial Disease in Participants With Refractory Epilepsy Phase 2/Phase 3
Completed NCT03678740 - Diagnostic Odyssey Survey 2
Recruiting NCT06051448 - Promoting Resilience in Stress Management (PRISM) and Clinical-focused Narrative (CFN) Pilot in Adults With Primary Mitochondrial Disease (PMD). Phase 1/Phase 2
Completed NCT02909400 - The KHENERGY Study Phase 2
Completed NCT02398201 - A Study of Bezafibrate in Mitochondrial Myopathy Phase 2
Completed NCT03857880 - Identification of New Candidate Genes in Patients With Mitochondrial Disease by High Resolution Chromosome Analysis on DNA Chip
Completed NCT04165239 - The KHENERGYZE Study Phase 2
Completed NCT02284334 - Glycemic Index in Mitochondrial Disease
Recruiting NCT06080568 - Human Mitochondrial Stress-driven Obesity Resistance
Recruiting NCT06080581 - Mitochondrial Dysfunctions Driving Insulin Resistance
Completed NCT04580979 - Natural History Study of FDXR Mutation-related Mitochondriopathy
Completed NCT04594590 - Natural History Study of SLC25A46 Mutation-related Mitochondriopathy
Withdrawn NCT03866954 - Trial of Erythrocyte Encapsulated Thymidine Phosphorylase In Mitochondrial Neurogastrointestinal Encephalomyopathy Phase 2
Recruiting NCT04113447 - Mitochondrial Donation: An 18 Month Outcome Study.
Enrolling by invitation NCT04734626 - CrCest Study in Primary Mitochondrial Disease
Completed NCT03832218 - Executive Function Disorders and Anxio-depressive Symptomatology in Children and Adolescents With Mitochondrial Pathologies N/A
Terminated NCT02473445 - A Long-term Extension of Study RP103-MITO-001 (NCT02023866) to Assess Cysteamine Bitartrate Delayed-release Capsules (RP103) in Children With Inherited Mitochondrial Disease Phase 2
Recruiting NCT05012358 - Genomic Profiling of Mitochondrial Disease - Imaging Analysis for Precise Mitochondrial Medicine
Recruiting NCT04920812 - MITOMICS : a Multi-OMICS Approach for the Diagnosis of Mitochondrial Diseases