Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to gather preliminary data on whether bezafibrate can improve cellular energy production in mitochondrial disease.

Mitochondrial diseases are rare inherited disorders that arise due to deficient energy production within the cells of the body. Consequently, the typical clinical features arise in organs with high energy requirements. Mitochondrial disorders exhibit highly variable clinical effects, both between individuals and within families. Characteristic symptoms include muscle weakness (myopathy), hearing loss, migraine, epilepsy and stroke like episodes in addition to diabetes and heart problems. Mitochondrial disorders can therefore impact considerably on both quality of life and life expectancy. Despite this, no proven disease modifying treatments are available.

Pre-clinical studies have identified that several existing medications improve mitochondrial function. Of these, bezafibrate has the best supportive data and, because it is already licensed as a treatment for high blood fats, has a well characterised side effect profile.

The investigators will therefore conduct a feasibility study of bezafibrate in people with mitochondrial myopathy. Ten affected participants will be recruited and will receive a titrating course of bezafibrate three times daily for 12 weeks.


Clinical Trial Description

Mitochondrial disorders are genetically determined metabolic diseases affecting approximately 1 in 5000 people. Current strategies for treating mitochondrial disorders are limited, and restricted to alleviating symptoms. A recently published Cochrane review did not identify any disease modifying treatments of proven benefit. There is therefore an urgent and currently unmet need for treatments that modify the underlying biochemical deficit and disease trajectory.

Improving deficient oxidative phosphorylation (OXPHOS) pathways through induction of mitochondrial biogenesis is a potential approach to the treatment of mitochondrial disorders. This involves stimulating transcription factors for both nuclear and mitochondrial genomes simultaneously in order to up-regulate respiratory chain (RC) gene expression. This role is fulfilled by peroxisome proliferator activated receptor (PPAR)-γ coactivator-1α (PGC-1α); a pivotal transcriptional co-factor widely considered the master regulator of mitochondrial biogenesis.

PGC-1α interacts with a number of transcription factors. These include α, β/δ and γ isoforms of the peroxisomal proliferator activated receptors (PPARs). This group of ubiquitously expressed nuclear receptors is activated by binding of fatty acids. Subsequently, transcription of genes involved in mitochondrial fatty acid oxidation is induced, thereby enabling cellular metabolic shift from glycolysis. Additionally, PGC-1α co-activates estrogen related receptor alpha (ERRα); nuclear respiratory factors (NRF) 1 and 2 (transcription factors bound to promoter regions of target nuclear genes involved in the respiratory chain); and TFAM (transcription factor A mitochondrial), which modulates mitochondrial DNA transcription and replication.

PGC-1α expression is induced through cold exposure, starvation and exercise. The PPARs, AMP-protein activated kinase (AMPK) and sirtuin 1 (Sirt1) also increase PGC-1α activity and provide a means through which this pathway can be pharmacologically manipulated. Indeed, several compounds have been identified that exert their effect in this way including: bezafibrate and the glitazones (PPAR agonists); metformin and AICAR (AMPK); and resveratrol (Sirt1). Of these, bezafibrate, glitazones and metformin have established relevance in diabetes and hyperlipidaemia. Their mechanism of action also provides a rationale for their use in other metabolic disorders such as obesity and mitochondrial disease.

Indeed,bezafibrate has shown promise as a disease modifying pharmaceutical agent in pre-clinical studies using both cellular and animal models of mitochondrial myopathy.

Cellular models of mitochondrial disease have demonstrated improvements in a variety of measures of mitochondrial function when grown in a bezafibrate enriched medium. This has included a cell line comparable to the specific patient group we propose to review in this feasibility study. Furthermore, a mouse model of mitochondrial myopathy has demonstrated improvement in clinically relevant outcomes including time to disease manifestation and life span.

This phase II, open label, non-randomised feasibility study aims to build on the work obtained in pre-clinical studies and provide proof of principle data in humans affected with the most common form of mitochondrial muscle disease. This study is not designed to provide proof of efficacy. However, should bezafibrate exert a demonstrable molecular effect here, the investigators anticipate the need for larger, randomised trials of bezafibrate in the future. An additional aim of this feasibility study, is therefore obtaining the relevant data to determine how many patients the investigators would need in a larger trial; and what biochemical and clinical measurements the investigators would use to determine drug effect in such a trial. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02398201
Study type Interventional
Source Newcastle-upon-Tyne Hospitals NHS Trust
Contact
Status Completed
Phase Phase 2
Start date September 2015
Completion date March 23, 2017

See also
  Status Clinical Trial Phase
Completed NCT03388528 - Low Residue Diet Study in Mitochondrial Disease N/A
Completed NCT04378075 - A Study to Evaluate Efficacy and Safety of Vatiquinone for Treating Mitochondrial Disease in Participants With Refractory Epilepsy Phase 2/Phase 3
Completed NCT03678740 - Diagnostic Odyssey Survey 2
Recruiting NCT06051448 - Promoting Resilience in Stress Management (PRISM) and Clinical-focused Narrative (CFN) Pilot in Adults With Primary Mitochondrial Disease (PMD). Phase 1/Phase 2
Completed NCT02909400 - The KHENERGY Study Phase 2
Completed NCT03857880 - Identification of New Candidate Genes in Patients With Mitochondrial Disease by High Resolution Chromosome Analysis on DNA Chip
Not yet recruiting NCT06450964 - Establishment of Reproductive Cohort and Prediction Model of Genetic Counseling for Mitochondrial Genetic Diseases
Completed NCT04165239 - The KHENERGYZE Study Phase 2
Completed NCT02284334 - Glycemic Index in Mitochondrial Disease
Recruiting NCT06080581 - Mitochondrial Dysfunctions Driving Insulin Resistance
Recruiting NCT06080568 - Human Mitochondrial Stress-driven Obesity Resistance
Recruiting NCT04802707 - Deoxynucleosides Pyrimidines as Treatment for Mitochondrial Depletion Syndrome Phase 2
Completed NCT04580979 - Natural History Study of FDXR Mutation-related Mitochondriopathy
Completed NCT04594590 - Natural History Study of SLC25A46 Mutation-related Mitochondriopathy
Withdrawn NCT03866954 - Trial of Erythrocyte Encapsulated Thymidine Phosphorylase In Mitochondrial Neurogastrointestinal Encephalomyopathy Phase 2
Recruiting NCT04113447 - Mitochondrial Donation: An 18 Month Outcome Study.
Enrolling by invitation NCT04734626 - CrCest Study in Primary Mitochondrial Disease
Completed NCT03832218 - Executive Function Disorders and Anxio-depressive Symptomatology in Children and Adolescents With Mitochondrial Pathologies N/A
Terminated NCT02473445 - A Long-term Extension of Study RP103-MITO-001 (NCT02023866) to Assess Cysteamine Bitartrate Delayed-release Capsules (RP103) in Children With Inherited Mitochondrial Disease Phase 2
Completed NCT05012358 - Genomic Profiling of Mitochondrial Disease - Imaging Analysis for Precise Mitochondrial Medicine