Clinical Trials Logo

Minimal Residual Disease clinical trials

View clinical trials related to Minimal Residual Disease.

Filter by:
  • Active, not recruiting  
  • Page 1

NCT ID: NCT04920188 Active, not recruiting - Clinical trials for Leukemia, Myeloid, Acute

Development and Application of a Novel Digital Array PCR for Acute Myeloid Leukemia (AML)

Start date: May 28, 2021
Phase:
Study type: Observational

Purpose: The purpose of this trial is to investigate whether a digital array assay can detect trace amounts of residual leukemia and predict relapse in acute myeloid leukemia (AML) patients in remission who have undergone allogeneic stem cell transplantation (SCT) at the North Carolina Cancer Hospital (NCCH). Participants: Adult patients (18 years of age or older) with diagnosed AML who are going to undergo stem cell transplant (SCT). Procedures (methods): A total of 10 eligible subjects will be treated per standard of care with SCT. Peripheral blood and bone marrow aspirate (10 mL each) for digital array assay analysis will be collected along with routine lab draws and bone marrow biopsy procedures prior to SCT. Beginning 1 month after SCT peripheral blood (10 ml) will be collected to assess MRD by digital array assay analysis on a monthly basis for up to 6 months. In addition, bone marrow aspirate will be collected at approximately Month 3 and 6 following SCT for assay analysis. Patient medical records will be reviewed 6 and 12 months after completing their last MRD follow up assessment to confirm survival status, remission status, and gather information related to relapse.

NCT ID: NCT04853017 Active, not recruiting - Colorectal Cancer Clinical Trials

A Study of ELI-002 in Subjects With KRAS Mutated Pancreatic Ductal Adenocarcinoma (PDAC) and Other Solid Tumors

AMPLIFY-201
Start date: October 4, 2021
Phase: Phase 1
Study type: Interventional

This is a Phase 1 study to assess the safety and efficacy of ELI-002 immunotherapy (a lipid-conjugated immune-stimulatory oligonucleotide [Amph-CpG-7909] plus a mixture of lipid-conjugated peptide-based antigens [Amph-Peptides]) as adjuvant treatment of minimal residual disease (MRD) in subjects with KRAS/neuroblastoma ras viral oncogene homolog (NRAS) mutated PDAC or other solid tumors.

NCT ID: NCT03233854 Active, not recruiting - Clinical trials for Minimal Residual Disease

CD19/CD22 Chimeric Antigen Receptor (CAR) T Cells With or Without NKTR-255 in Adults With Recurrent or Refractory B Cell Malignancies

Start date: September 1, 2017
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects of CD19/CD22 chimeric antigen receptor (CAR) T cells when given together with chemotherapy and NKTR-255, and to see how well they work in treating patients with CD19 positive B acute lymphoblastic leukemia that has come back or does not respond to treatment. A CAR is a genetically-engineered receptor made so that immune cells (T cells) can attack cancer cells by recognizing and responding to the CD19/CD22 proteins. These proteins are commonly found on diffuse large B-cell lymphoma and B acute lymphoblastic leukemia. Drugs used in chemotherapy, such as cyclophosphamide and fludarabine phosphate, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. NKTR-255 is an investigational IL-15 receptor agonist designed to boost the immune system's natural ability to fight cancer. Giving CD19/CD22-CAR T cells and chemotherapy in combination with NKTR-255 may work better in treating patients with diffuse large B-cell lymphoma or B acute lymphoblastic leukemia.

NCT ID: NCT03192397 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Chemotherapy, Total Body Irradiation, and Post-Transplant Cyclophosphamide in Reducing Rates of Graft Versus Host Disease in Patients With Hematologic Malignancies Undergoing Donor Stem Cell Transplant

Start date: August 9, 2017
Phase: Phase 1/Phase 2
Study type: Interventional

This phase Ib/2 trial studies how well chemotherapy, total body irradiation, and post-transplant cyclophosphamide work in reducing rates of graft versus host disease in patients with hematologic malignancies undergoing a donor stem cell transplant. Drugs used in the chemotherapy, such as fludarabine phosphate and melphalan hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft versus host disease). Giving cyclophosphamide after the transplant may stop this from happening.

NCT ID: NCT02458014 Active, not recruiting - Clinical trials for Minimal Residual Disease

Blinatumomab in Treating Patients With B-cell Acute Lymphoblastic Leukemia With Minimal Residual Disease

Start date: September 14, 2015
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well blinatumomab works in treating patients with B-cell acute lymphoblastic leukemia whose disease is in remission (causes no symptoms or signs) but is still present in a small number of cells in the body (minimal residual disease). Immunotherapy with monoclonal antibodies, such as blinatumomab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT02159495 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia and Persistent/Recurrent Blastic Plasmacytoid Dendritic Cell Neoplasm

Start date: December 15, 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and the best dose of genetically modified T-cells after lymphodepleting chemotherapy in treating patients with acute myeloid leukemia or blastic plasmacytoid dendritic cell neoplasm that has returned after a period of improvement or has not responded to previous treatment. An immune cell is a type of blood cell that can recognize and kill abnormal cells in the body. The immune cell product will be made from patient or patient's donor (related or unrelated) blood cells. The immune cells are changed by inserting additional pieces of deoxyribonucleic acid (DNA) (genetic material) into the cell to make it recognize and kill cancer cells. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.

NCT ID: NCT01894477 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Treo/Flu/TBI With Donor Stem Cell Transplant for Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia

Start date: November 2013
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well treosulfan and fludarabine phosphate, with or without total body irradiation before donor stem cell transplant works in treating patients with myelodysplastic syndrome or acute myeloid leukemia. Giving chemotherapy, such as treosulfan and fludarabine phosphate, and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus before and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT01827137 Active, not recruiting - Multiple Myeloma Clinical Trials

WT1 Analog Peptide Vaccine in Patients With Multiple Myeloma Following Autologous Stem Cell Transplantation

Start date: April 2013
Phase: N/A
Study type: Interventional

The purpose of this study is to see if the investigator can help the immune system to work against myeloma through the use/administration of a peptide vaccine (immunotherapy agent) directed against the Wilms Tumor 1 (WT1) protein called galinpepimut-S (or GPS, for brief). Because cancer is produced by the patient's own body, the immune system does not easily recognize and fight cancer cells. The immune system needs to be "trained" to do this; the latter goal is accomplished by using a vaccine consisting of selected fragments of the target antigen, in this case, WT1. This disease has been selected for this study because the WT1 protein is often present in myeloma cells. WT1 is a gene that is involved in the normal development of kidneys and other organs. When the WT1 gene becomes abnormal, it can make proteins involved in the development of cancer, i.e., can acquire the properties of a true "oncogene". This study will determine whether the vaccine against the WT1 antigen (present in malignant plasmacytes) can cause an immune response which is safe, but also able to keep the myeloma from either coming back or progressing.