Mild Cognitive Impairment Clinical Trial
— SUCCEEDOfficial title:
Sleep Disturbance in MCI: A Pilot Study of a Cognitive Behavioural Therapy Digital Intervention (SUCCEED)
Verified date | May 2024 |
Source | University of Sydney |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
This study aims to determine the feasibility of a randomized-controlled trial of digital cognitive behavioural therapy for insomnia (CBT-I) for sleep and cognitive performance in older adults with MCI and insomnia symptoms (50-80 years). The trial will be completed online, and participants will be recruited from the community across Australia.
Status | Completed |
Enrollment | 40 |
Est. completion date | November 17, 2023 |
Est. primary completion date | August 10, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 50 Years to 80 Years |
Eligibility | Inclusion Criteria: - Diagnosis of MCI as defined by a neuropsychologist. - Able to provide informed electronic consent. - Fluent English literacy. - Adults aged between 50-80 years. - Insomnia symptoms as indicated by a score >10 on the Insomnia Severity Index (ISI). - Regular computer, smartphone, or tablet use, with internet access. Exclusion Criteria: - Previous diagnosis of dementia or a score on the brief Montreal Cognitive Assessment of <18. - Previous major head injury, cerebrovascular events (stroke, TIA), or loss of consciousness = 30 minutes. - Previous or current neurological disorder diagnosis (e.g. Parkinson's, multiple sclerosis, epilepsy). - Current illicit substance use or harmful alcohol intake (Alcohol Use Disorders Identification Test Consumption (AUDIT-C) score > 8). - Current severe major depression diagnosis as defined by a score >20 on the Patient Health Questionnaire (PHQ-9) and/or suicidal ideation (score of >1 on Q9 of the PHQ-9), or severe psychiatric or developmental disorders (e.g. Schizophrenia, bipolar disorder, autism). - Major sleep disorders (e.g. narcolepsy, severe restless legs syndrome, and rapid eye movement (REM) sleep behaviour disorder) - Commencement of continuous positive airway pressure therapy, antidepressants, melatonin or engaged in CBT or psychological interventions within the prior 4 weeks. - Shift workers, recent (within 30-days) transmeridian travel. - Older adults with a risk of an increase in daytime sleepiness and decreased alertness (e.g. professional drivers or those who operate heavy machinery). - Any contraindication to sleep deprivation therapy. - Currently participating in or has participated in a research study of an investigational agent or device within 4 weeks of enrolment. - Any medication that has been used to assist sleep for three or more nights per week (e.g. benzodiazepines, sedative hypnotics, opioids) or at the discretion of the clinician. |
Country | Name | City | State |
---|---|---|---|
Australia | The University of Sydney | Sydney | New South Wales |
Lead Sponsor | Collaborator |
---|---|
University of Sydney |
Australia,
Andrieu S, Coley N, Lovestone S, Aisen PS, Vellas B. Prevention of sporadic Alzheimer's disease: lessons learned from clinical trials and future directions. Lancet Neurol. 2015 Sep;14(9):926-944. doi: 10.1016/S1474-4422(15)00153-2. Epub 2015 Jul 23. — View Citation
Australia D. Dementia Prevalence Data 2018-2058, Commissioned research undertaken by NATSEM: University of Canberra; 2018
Barnett JH, Lewis L, Blackwell AD, Taylor M. Early intervention in Alzheimer's disease: a health economic study of the effects of diagnostic timing. BMC Neurol. 2014 May 7;14:101. doi: 10.1186/1471-2377-14-101. — View Citation
Bastien CH, Vallieres A, Morin CM. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001 Jul;2(4):297-307. doi: 10.1016/s1389-9457(00)00065-4. — View Citation
Brett J, Murnion B. Management of benzodiazepine misuse and dependence. Aust Prescr. 2015 Oct;38(5):152-5. doi: 10.18773/austprescr.2015.055. Epub 2015 Oct 1. — View Citation
Brown BM, Rainey-Smith SR, Bucks RS, Weinborn M, Martins RN. Exploring the bi-directional relationship between sleep and beta-amyloid. Curr Opin Psychiatry. 2016 Nov;29(6):397-401. doi: 10.1097/YCO.0000000000000285. — View Citation
Brown BM, Rainey-Smith SR, Villemagne VL, Weinborn M, Bucks RS, Sohrabi HR, Laws SM, Taddei K, Macaulay SL, Ames D, Fowler C, Maruff P, Masters CL, Rowe CC, Martins RN; AIBL Research Group. The Relationship between Sleep Quality and Brain Amyloid Burden. Sleep. 2016 May 1;39(5):1063-8. doi: 10.5665/sleep.5756. — View Citation
Busse A, Hensel A, Guhne U, Angermeyer MC, Riedel-Heller SG. Mild cognitive impairment: long-term course of four clinical subtypes. Neurology. 2006 Dec 26;67(12):2176-85. doi: 10.1212/01.wnl.0000249117.23318.e1. — View Citation
Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989 May;28(2):193-213. doi: 10.1016/0165-1781(89)90047-4. — View Citation
Cameron K, Williamson P, Short MA, Gradisar M. Validation of the Flinders Fatigue Scale as a measure of daytime fatigue. Sleep Med. 2017 Feb;30:105-112. doi: 10.1016/j.sleep.2016.11.016. Epub 2016 Dec 3. — View Citation
Cassidy-Eagle E, Siebern A, Unti L, Glassman J, O'Hara R. Neuropsychological Functioning in Older Adults with Mild Cognitive Impairment and Insomnia Randomized to CBT-I or Control Group. Clin Gerontol. 2018 Mar-Apr;41(2):136-144. doi: 10.1080/07317115.2017.1384777. Epub 2017 Dec 8. — View Citation
Cheng P, Luik AI, Fellman-Couture C, Peterson E, Joseph CLM, Tallent G, Tran KM, Ahmedani BK, Roehrs T, Roth T, Drake CL. Efficacy of digital CBT for insomnia to reduce depression across demographic groups: a randomized trial. Psychol Med. 2019 Feb;49(3):491-500. doi: 10.1017/S0033291718001113. Epub 2018 May 24. — View Citation
Chung F, Yegneswaran B, Liao P, Chung SA, Vairavanathan S, Islam S, Khajehdehi A, Shapiro CM. STOP questionnaire: a tool to screen patients for obstructive sleep apnea. Anesthesiology. 2008 May;108(5):812-21. doi: 10.1097/ALN.0b013e31816d83e4. — View Citation
Cross NE, Lagopoulos J, Duffy SL, Cockayne NL, Hickie IB, Lewis SJ, Naismith SL. Sleep quality in healthy older people: relationship with (1)H magnetic resonance spectroscopy markers of glial and neuronal integrity. Behav Neurosci. 2013 Oct;127(5):803-10. doi: 10.1037/a0034154. — View Citation
Cuamatzi-Castelan, A. S., Cheng, P., Fellman-Couture, C., Tallent, G., Tran, K. M., Espie, C. A., ... & Drake, C. L. (2018). 0375 Long-term Efficacy of the Sleep to Prevent Evolving Affective Disorders (SPREAD) Trial as an Internet-based Treatment for Insomnia. Sleep, 41, A143
D'Rozario AL, Chapman JL, Phillips CL, Palmer JR, Hoyos CM, Mowszowski L, Duffy SL, Marshall NS, Benca R, Mander B, Grunstein RR, Naismith SL. Objective measurement of sleep in mild cognitive impairment: A systematic review and meta-analysis. Sleep Med Rev. 2020 Aug;52:101308. doi: 10.1016/j.smrv.2020.101308. Epub 2020 Mar 13. — View Citation
de Almondes KM, Costa MV, Malloy-Diniz LF, Diniz BS. Insomnia and risk of dementia in older adults: Systematic review and meta-analysis. J Psychiatr Res. 2016 Jun;77:109-15. doi: 10.1016/j.jpsychires.2016.02.021. Epub 2016 Mar 8. — View Citation
Diamond K, Mowszowski L, Cockayne N, Norrie L, Paradise M, Hermens DF, Lewis SJ, Hickie IB, Naismith SL. Randomized controlled trial of a healthy brain ageing cognitive training program: effects on memory, mood, and sleep. J Alzheimers Dis. 2015;44(4):1181-91. doi: 10.3233/JAD-142061. — View Citation
Elcombe EL, Lagopoulos J, Duffy SL, Lewis SJ, Norrie L, Hickie IB, Naismith SL. Hippocampal volume in older adults at risk of cognitive decline: the role of sleep, vascular risk, and depression. J Alzheimers Dis. 2015;44(4):1279-90. doi: 10.3233/JAD-142016. — View Citation
Espie CA, Kyle SD, Miller CB, Ong J, Hames P, Fleming L. Attribution, cognition and psychopathology in persistent insomnia disorder: outcome and mediation analysis from a randomized placebo-controlled trial of online cognitive behavioural therapy. Sleep Med. 2014 Aug;15(8):913-7. doi: 10.1016/j.sleep.2014.03.001. Epub 2014 Mar 12. — View Citation
Espie CA, Kyle SD, Williams C, Ong JC, Douglas NJ, Hames P, Brown JS. A randomized, placebo-controlled trial of online cognitive behavioral therapy for chronic insomnia disorder delivered via an automated media-rich web application. Sleep. 2012 Jun 1;35(6):769-81. doi: 10.5665/sleep.1872. — View Citation
Freeman D, Sheaves B, Goodwin GM, Yu LM, Nickless A, Harrison PJ, Emsley R, Luik AI, Foster RG, Wadekar V, Hinds C, Gumley A, Jones R, Lightman S, Jones S, Bentall R, Kinderman P, Rowse G, Brugha T, Blagrove M, Gregory AM, Fleming L, Walklet E, Glazebrook C, Davies EB, Hollis C, Haddock G, John B, Coulson M, Fowler D, Pugh K, Cape J, Moseley P, Brown G, Hughes C, Obonsawin M, Coker S, Watkins E, Schwannauer M, MacMahon K, Siriwardena AN, Espie CA. The effects of improving sleep on mental health (OASIS): a randomised controlled trial with mediation analysis. Lancet Psychiatry. 2017 Oct;4(10):749-758. doi: 10.1016/S2215-0366(17)30328-0. Epub 2017 Sep 6. — View Citation
Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H, Cummings JL, de Leon M, Feldman H, Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B; International Psychogeriatric Association Expert Conference on mild cognitive impairment. Mild cognitive impairment. Lancet. 2006 Apr 15;367(9518):1262-70. doi: 10.1016/S0140-6736(06)68542-5. — View Citation
Gillis C, Mirzaei F, Potashman M, Ikram MA, Maserejian N. The incidence of mild cognitive impairment: A systematic review and data synthesis. Alzheimers Dement (Amst). 2019 Mar 8;11:248-256. doi: 10.1016/j.dadm.2019.01.004. eCollection 2019 Dec. — View Citation
Hill NT, Mowszowski L, Naismith SL, Chadwick VL, Valenzuela M, Lampit A. Computerized Cognitive Training in Older Adults With Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Am J Psychiatry. 2017 Apr 1;174(4):329-340. doi: 10.1176/appi.ajp.2016.16030360. Epub 2016 Nov 14. — View Citation
Hu C, Yu D, Sun X, Zhang M, Wang L, Qin H. The prevalence and progression of mild cognitive impairment among clinic and community populations: a systematic review and meta-analysis. Int Psychogeriatr. 2017 Oct;29(10):1595-1608. doi: 10.1017/S1041610217000473. — View Citation
Irwin MR, Vitiello MV. Implications of sleep disturbance and inflammation for Alzheimer's disease dementia. Lancet Neurol. 2019 Mar;18(3):296-306. doi: 10.1016/S1474-4422(18)30450-2. Epub 2019 Jan 17. — View Citation
Iverson GL, Lam RW. Rapid screening for perceived cognitive impairment in major depressive disorder. Ann Clin Psychiatry. 2013 May;25(2):135-40. — View Citation
Jack CR, Wiste HJ, Botha H, Weigand SD, Therneau TM, Knopman DS, Graff-Radford J, Jones DT, Ferman TJ, Boeve BF, Kantarci K, Lowe VJ, Vemuri P, Mielke MM, Fields JA, Machulda MM, Schwarz CG, Senjem ML, Gunter JL, Petersen RC. The bivariate distribution of amyloid-beta and tau: relationship with established neurocognitive clinical syndromes. Brain. 2019 Oct 1;142(10):3230-3242. doi: 10.1093/brain/awz268. — View Citation
Kyle SD, Hurry MED, Emsley R, Marsden A, Omlin X, Juss A, Spiegelhalder K, Bisdounis L, Luik AI, Espie CA, Sexton CE. The effects of digital cognitive behavioral therapy for insomnia on cognitive function: a randomized controlled trial. Sleep. 2020 Sep 14;43(9):zsaa034. doi: 10.1093/sleep/zsaa034. — View Citation
Kyle SD, Morgan K, Spiegelhalder K, Espie CA. No pain, no gain: an exploratory within-subjects mixed-methods evaluation of the patient experience of sleep restriction therapy (SRT) for insomnia. Sleep Med. 2011 Sep;12(8):735-47. doi: 10.1016/j.sleep.2011.03.016. Epub 2011 Sep 9. — View Citation
LaMonica HM, Davenport TA, Roberts AE, Hickie IB. Understanding Technology Preferences and Requirements for Health Information Technologies Designed to Improve and Maintain the Mental Health and Well-Being of Older Adults: Participatory Design Study. JMIR Aging. 2021 Jan 6;4(1):e21461. doi: 10.2196/21461. — View Citation
LaMonica HM, English A, Hickie IB, Ip J, Ireland C, West S, Shaw T, Mowszowski L, Glozier N, Duffy S, Gibson AA, Naismith SL. Examining Internet and eHealth Practices and Preferences: Survey Study of Australian Older Adults With Subjective Memory Complaints, Mild Cognitive Impairment, or Dementia. J Med Internet Res. 2017 Oct 25;19(10):e358. doi: 10.2196/jmir.7981. — View Citation
Lezak MD, Howieson DB, Loring DW, Fischer JS. Neuropsychological assessment. Oxford University Press, USA; 2004.
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimaki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbaek G, Teri L, Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020 Aug 8;396(10248):413-446. doi: 10.1016/S0140-6736(20)30367-6. Epub 2020 Jul 30. No abstract available. Erratum In: Lancet. 2023 Sep 30;402(10408):1132. — View Citation
Lovato N, Lack L, Wright H, Kennaway DJ. Evaluation of a brief treatment program of cognitive behavior therapy for insomnia in older adults. Sleep. 2014 Jan 1;37(1):117-26. doi: 10.5665/sleep.3320. — View Citation
Love S, Miners JS. Cerebrovascular disease in ageing and Alzheimer's disease. Acta Neuropathol. 2016 May;131(5):645-58. doi: 10.1007/s00401-015-1522-0. Epub 2015 Dec 28. — View Citation
Lucey BP, McCullough A, Landsness EC, Toedebusch CD, McLeland JS, Zaza AM, Fagan AM, McCue L, Xiong C, Morris JC, Benzinger TLS, Holtzman DM. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer's disease. Sci Transl Med. 2019 Jan 9;11(474):eaau6550. doi: 10.1126/scitranslmed.aau6550. Erratum In: Sci Transl Med. 2020 Jan 8;12(525): — View Citation
Luik AI, Bostock S, Chisnall L, Kyle SD, Lidbetter N, Baldwin N, Espie CA. Treating Depression and Anxiety with Digital Cognitive Behavioural Therapy for Insomnia: A Real World NHS Evaluation Using Standardized Outcome Measures. Behav Cogn Psychother. 2017 Jan;45(1):91-96. doi: 10.1017/S1352465816000369. Epub 2016 Jul 26. — View Citation
Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR, Ancoli-Israel S, Jagust W, Walker MP. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci. 2013 Mar;16(3):357-64. doi: 10.1038/nn.3324. Epub 2013 Jan 27. — View Citation
Manea L, Gilbody S, McMillan D. Optimal cut-off score for diagnosing depression with the Patient Health Questionnaire (PHQ-9): a meta-analysis. CMAJ. 2012 Feb 21;184(3):E191-6. doi: 10.1503/cmaj.110829. Epub 2011 Dec 19. — View Citation
McKinnon A, Terpening Z, Hickie IB, Batchelor J, Grunstein R, Lewis SJ, Naismith SL. Prevalence and predictors of poor sleep quality in mild cognitive impairment. J Geriatr Psychiatry Neurol. 2014 Sep;27(3):204-11. doi: 10.1177/0891988714527516. Epub 2014 Mar 31. — View Citation
McKinnon AC, Lagopoulos J, Terpening Z, Grunstein R, Hickie IB, Batchelor J, Lewis SJ, Duffy S, Shine JM, Naismith SL. Sleep disturbance in mild cognitive impairment is associated with alterations in the brain's default mode network. Behav Neurosci. 2016 Jun;130(3):305-15. doi: 10.1037/bne0000137. Epub 2016 Mar 10. — View Citation
Meerlo P, Mistlberger RE, Jacobs BL, Heller HC, McGinty D. New neurons in the adult brain: the role of sleep and consequences of sleep loss. Sleep Med Rev. 2009 Jun;13(3):187-94. doi: 10.1016/j.smrv.2008.07.004. Epub 2008 Oct 9. — View Citation
Miller CB, Espie CA, Epstein DR, Friedman L, Morin CM, Pigeon WR, Spielman AJ, Kyle SD. The evidence base of sleep restriction therapy for treating insomnia disorder. Sleep Med Rev. 2014 Oct;18(5):415-24. doi: 10.1016/j.smrv.2014.01.006. Epub 2014 Feb 12. — View Citation
Miller, C. B., Espie, C. A., & Kyle, S. D. (2014). Cognitive behavioral therapy for the management of poor sleep in insomnia disorder. ChronoPhysiology and Therapy, 4, 99.
Morin CM, Jarrin DC. Epidemiology of Insomnia: Prevalence, Course, Risk Factors, and Public Health Burden. Sleep Med Clin. 2022 Jun;17(2):173-191. doi: 10.1016/j.jsmc.2022.03.003. Epub 2022 Apr 23. — View Citation
Naismith SL, Glozier N, Burke D, Carter PE, Scott E, Hickie IB. Early intervention for cognitive decline: is there a role for multiple medical or behavioural interventions? Early Interv Psychiatry. 2009 Feb;3(1):19-27. doi: 10.1111/j.1751-7893.2008.00102.x. — View Citation
Naismith SL, Lewis SJ, Rogers NL. Sleep-wake changes and cognition in neurodegenerative disease. Prog Brain Res. 2011;190:21-52. doi: 10.1016/B978-0-444-53817-8.00002-5. — View Citation
Naismith SL, Mowszowski L. Sleep disturbance in mild cognitive impairment: a systematic review of recent findings. Curr Opin Psychiatry. 2018 Mar;31(2):153-159. doi: 10.1097/YCO.0000000000000397. — View Citation
Naismith SL, Pye J, Terpening Z, Lewis S, Bartlett D. "Sleep Well, Think Well" Group Program for Mild Cognitive Impairment: A Randomized Controlled Pilot Study. Behav Sleep Med. 2019 Nov-Dec;17(6):778-789. doi: 10.1080/15402002.2018.1518223. Epub 2018 Sep 24. — View Citation
Naismith SL, Rogers NL, Hickie IB, Mackenzie J, Norrie LM, Lewis SJ. Sleep well, think well: sleep-wake disturbance in mild cognitive impairment. J Geriatr Psychiatry Neurol. 2010 Jun;23(2):123-30. doi: 10.1177/0891988710363710. Epub 2010 Mar 30. — View Citation
Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005 Apr;53(4):695-9. doi: 10.1111/j.1532-5415.2005.53221.x. Erratum In: J Am Geriatr Soc. 2019 Sep;67(9):1991. — View Citation
Norman CD, Skinner HA. eHEALS: The eHealth Literacy Scale. J Med Internet Res. 2006 Nov 14;8(4):e27. doi: 10.2196/jmir.8.4.e27. — View Citation
Ohayon MM. Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev. 2002 Apr;6(2):97-111. doi: 10.1053/smrv.2002.0186. — View Citation
Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B. Current concepts in mild cognitive impairment. Arch Neurol. 2001 Dec;58(12):1985-92. doi: 10.1001/archneur.58.12.1985. — View Citation
Pillai V, Anderson JR, Cheng P, Bazan L, Bostock S, Espie CA, Roth T, Drake CL. The Anxiolytic Effects of Cognitive Behavior Therapy for Insomnia: Preliminary Results from a Web-delivered Protocol. J Sleep Med Disord. 2015;2(2):1017. Epub 2015 Feb 23. — View Citation
Rey, A. (1941). L'examen psychologique dans les cas d'encéphalopathie traumatique.(Les problems.). Archives de psychologie.
Ricker JH, Axelrod BN. Analysis of an Oral Paradigm for the Trail Making Test. Assessment. 1994 Mar;1(1):47-52. doi: 10.1177/1073191194001001007. — View Citation
Roth C. (2011) Boston Naming Test. In: Kreutzer J.S., DeLuca J., Caplan B. (eds) Encyclopedia of Clinical Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79948-3_869
Roth T. Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med. 2007 Aug 15;3(5 Suppl):S7-10. No abstract available. — View Citation
Sheikh, J. I., & Yesavage, J. A. (1986). Geriatric Depression Scale (GDS): recent evidence and development of a shorter version. Clinical Gerontologist: The Journal of Aging and Mental Health.
Shi L, Chen SJ, Ma MY, Bao YP, Han Y, Wang YM, Shi J, Vitiello MV, Lu L. Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis. Sleep Med Rev. 2018 Aug;40:4-16. doi: 10.1016/j.smrv.2017.06.010. Epub 2017 Jul 6. — View Citation
Shokri-Kojori E, Wang GJ, Wiers CE, Demiral SB, Guo M, Kim SW, Lindgren E, Ramirez V, Zehra A, Freeman C, Miller G, Manza P, Srivastava T, De Santi S, Tomasi D, Benveniste H, Volkow ND. beta-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4483-4488. doi: 10.1073/pnas.1721694115. Epub 2018 Apr 9. — View Citation
Smith A. Symbol digit modalities test: Manual. Los Angeles (CA): Western Psychological Services; 1982.
Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):280-92. doi: 10.1016/j.jalz.2011.03.003. Epub 2011 Apr 21. — View Citation
Sterniczuk R, Theou O, Rusak B, Rockwood K. Sleep disturbance is associated with incident dementia and mortality. Curr Alzheimer Res. 2013 Sep;10(7):767-75. doi: 10.2174/15672050113109990134. — View Citation
Toledo JB, Arnold SE, Raible K, Brettschneider J, Xie SX, Grossman M, Monsell SE, Kukull WA, Trojanowski JQ. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's Coordinating Centre. Brain. 2013 Sep;136(Pt 9):2697-706. doi: 10.1093/brain/awt188. Epub 2013 Jul 10. — View Citation
Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014 Jan 8;81(1):12-34. doi: 10.1016/j.neuron.2013.12.025. — View Citation
Walker MP. Sleep, memory and emotion. Prog Brain Res. 2010;185:49-68. doi: 10.1016/B978-0-444-53702-7.00004-X. — View Citation
Wardle-Pinkston S, Slavish DC, Taylor DJ. Insomnia and cognitive performance: A systematic review and meta-analysis. Sleep Med Rev. 2019 Dec;48:101205. doi: 10.1016/j.smrv.2019.07.008. Epub 2019 Aug 12. — View Citation
Wechsler D. Wechsler Adult Intelligence Scale-Fourth Edition: Technical and interpretative manual. San Antonio (TX): Pearson Assessment; 2008.
Wechsler D. Wechsler Memory Scale. San Antonio (TX): Psychological Corporation; 1997
Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004 Sep;256(3):240-6. doi: 10.1111/j.1365-2796.2004.01380.x. — View Citation
Wolkove N, Elkholy O, Baltzan M, Palayew M. Sleep and aging: 1. Sleep disorders commonly found in older people. CMAJ. 2007 Apr 24;176(9):1299-304. doi: 10.1503/cmaj.060792. — View Citation
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science. 2013 Oct 18;342(6156):373-7. doi: 10.1126/science.1241224. — View Citation
Zachariae R, Lyby MS, Ritterband LM, O'Toole MS. Efficacy of internet-delivered cognitive-behavioral therapy for insomnia - A systematic review and meta-analysis of randomized controlled trials. Sleep Med Rev. 2016 Dec;30:1-10. doi: 10.1016/j.smrv.2015.10.004. Epub 2015 Oct 24. — View Citation
* Note: There are 77 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Overall health status | Overall health status will be assessed using the EuroQol 5-dimension scale, a brief questionnaire about health-related quality of life that queries 5 dimensions of everyday experience that are each rated using a 5-point scale (no problems/slight problems/moderate problems/severe problems/extreme problems) and the overall score range from 0 (worst health state imaginable) to 100 (best health state imaginable). Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Other | Adherence to the online modules | The digital CBT-I program provides online analytics which can be used to monitor adherence by assessing what proportion of patients in the Sleepio arm complete at least 4 sessions. Thus, adherence to the online modules will be determined using a pre-specified value of =4 sessions | by 12 weeks | |
Other | Overall engagement to digital CBT-I | Overall engagement to digital CBT-I will be assessed by the User Engagement Scale Short Form (UES-SF). The UES-SF is composed of 12 questions divided between 4 domains: aesthetic appeal (AE), reward (RW), perceived usability (PU) and focused attention (FA). Overall engagement score will be calculated by adding all of the items together and dividing by twelve. The overall score ranges from 1 (low engagement) to 5 (high engagement). This is a tool that has been used to evaluate the main factors for adherence in online interventions. | by 12 weeks | |
Other | Self-report sleep quality | Self-report sleep quality will be determined from the Pittsburgh Sleep Quality Index (PSQI), a 19-items questionnaire with 7 components. Each of these components produces a score ranging from 0 (no difficulty) to 3 (severe difficulty). The components scores are summed to yield a global score (range 0 - 21) with higher total score indicating worse sleep quality. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Other | Self-report sleep efficiency | Self-report sleep efficiency will be determined from the Pittsburgh Sleep Quality Index (PSQI), a 19-items questionnaire with a global score range 0 - 21 with higher total score indicating worse sleep quality. Component 4 of the PSQI will be calculated using the question about sleep duration, bedtime and risetime and analysed as a raw percentage for differences at 12 weeks. | baseline and at 12 weeks | |
Other | Fatigue levels | Fatigue levels will be determined from the Flinders Fatigue Scale (FSS), a 7 items self-report scale which assess fatigue over the past 2 weeks. This scale provides a total fatigue score ranging from 0 to 31, with higher scores indicating greater fatigue. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Other | Subjective cognitive complaints | Subjective cognitive complaints will be determined from the British Columbia Cognitive Complaints Inventory, a 6-item screening tool that assesses perceived cognitive difficulties in the past 7 days. Each item uses a 3-point Likert scale to capture a rating (0 = not at all; 3= very much) which add up to: broadly normal (0-4); mild cognitive complaints (5-8); moderate cognitive complaints (9-14); and severe cognitive complaints (15-18). Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Other | Target detection (number of correct hits) as assessed by the Rapid Visual Processing (RVP) test from the Cambridge Neuropsychological Test Automatic Battery (CANTAB). | The RVP is a web-based test from CANTAB that measures sustained attention. The outcome is auto-calculated by CANTAB. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Other | Probability of False Alarm (False Alarms ÷ (False Alarms + Correct Rejections)) as assessed by the Rapid Visual Processing (RVP) test from the Cambridge Neuropsychological Test Automatic Battery (CANTAB). | The RVP is a web-based test from CANTAB that measures sustained attention. The outcome is auto-calculated by CANTAB. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Other | New learning (number of times a subject chose the correct box on their first attempt when recalling the pattern locations. Calculated across all assessed trials) as assessed by the Paired Associate Learning (PAL) subtest from CANTAB. | The PAL is a web-based test from CANTAB that assess visual memory and new learning. The outcome is auto-calculated by CANTAB. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Other | Problem solving (number of times that the subject chose a wrong stimulus) as assessed by Intra-Extra Dimensional Set Shift (IED) subtest from the Cambridge Neuropsychological Test Automatic Battery (CANTAB). | The IED is a web-based test from CANTAB that assess executive functioning. The outcome is auto-calculated by CANTAB. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Other | Perseveration (number of trials for which the outcome was an incorrect response across all assessed trials) as assessed by Intra-Extra Dimensional Set Shift (IED) subtest from the Cambridge Neuropsychological Test Automatic Battery (CANTAB). | The IED is a web-based test from CANTAB that assess executive functioning. The outcome is auto-calculated by CANTAB. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Primary | The proportion of participants who are issued a pre-screening number and then are determined to be eligible to be booked for screening. | The aim is to provide feasibility data for a full-scale randomized controlled trial (RCT). We will document the number of participants who are eligible after the screening process. | During Screening | |
Primary | The proportion of participants who are issued a screening number and then are determined to be eligible for randomisation. | We will document the number of participants who consent to the study after all inclusion/exclusion criteria are met. | Over a 6-month period of recruitment. | |
Primary | Percentage of participants who randomised who originally came from the memory clinic and percentage that were randomised who originally came from online recruitment. | An aim of this trial is to determine the feasibility of recruiting through memory clinics and/or online advertising. We will document the number of participants who have been recruited through memory clinics or online advertising. | Month 0 | |
Secondary | Insomnia symptom severity | Insomnia symptoms severity will be determined from the Insomnia Severity Index (ISI), a 7-item patient reported outcome measure that probes the severity of current symptoms of insomnia over the past 2 weeks. Each item uses a 5-point Likert scale to capture a rating (0 = no problem; 4 = very severe problem) which add up to: no insomnia (0 - 7); sub-threshold insomnia (8 - 14); moderate insomnia (15 - 21); and severe insomnia (22 - 28). Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Secondary | Target detection (A'; the accuracy with which a subject detects targets (the expected range is 0.00 to 1.00)) as assessed by the Rapid Visual Processing (RVP) test from the Cambridge Neuropsychological Test Automatic Battery (CANTAB). | The RVP is a web-based test from CANTAB that measures sustained attention. The outcome is auto-calculated by CANTAB. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Secondary | Processing speed (median response latency in milliseconds) as assessed by the Rapid Visual Processing (RVP) test from the Cambridge Neuropsychological Test Automatic Battery (CANTAB). | The RVP is a web-based test from CANTAB that measures sustained attention. The outcome is auto-calculated by CANTAB. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Secondary | Adjusted perseveration (number of times that the subject chose a wrong stimulus adjustment for every stage that was not reached) as assessed by Intra-Extra Dimensional Set Shift (IED) subtest from CANTAB. | The IED is a web-based test from CANTAB that assess executive functioning. The outcome is auto-calculated by CANTAB. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Secondary | Visual memory (number of times the subject chose the incorrect box for a stimulus adjusted for the estimated number of errors on trials not completed) as assessed by the Paired Associate Learning (PAL) subtest from CANTAB. | The PAL is a web-based test from CANTAB that assess visual memory and new learning. The outcome is auto-calculated by CANTAB. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Secondary | Problem solving (number of trials completed on all attempted stages with an adjustment for any stages not reached) as assessed by Intra-Extra Dimensional Set Shift (IED) subtest from the Cambridge Neuropsychological Test Automatic Battery (CANTAB). | The IED is a web-based test from CANTAB that assess executive functioning. The outcome is auto-calculated by CANTAB. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks | |
Secondary | Depressive symptoms | Depressive symptoms will be assessed by the Geriatric Depression Scale (GDS) which is a 15-item self-report questionnaire that has been developed to assess depressive symptoms This instrument evaluated depressive symptoms using yes/no answers. Scores range between 0 and 15 points where higher scores indicate more severe depressive symptoms. Primary endpoint to test for differences is 12 weeks. | baseline and at 12 weeks |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04513106 -
Promoting Advance Care Planning for Persons With Early-stage Dementia in the Community: a Feasibility Trial
|
N/A | |
Recruiting |
NCT06011681 -
The Rapid Diagnosis of MCI and Depression in Patients Ages 60 and Over
|
||
Recruiting |
NCT04522739 -
Spironolactone Safety in African Americans With Mild Cognitive Impairment and Early Alzheimer's Disease
|
Phase 4 | |
Active, not recruiting |
NCT03167840 -
Falls Prevention Through Physical And Cognitive Training in Mild Cognitive Impairment
|
N/A | |
Active, not recruiting |
NCT03676881 -
Longitudinal Validation of a Computerized Cognitive Battery (Cognigram) in the Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease
|
||
Not yet recruiting |
NCT05041790 -
A Clinical Trial to Evaluate the Efficacy and Safety of Choline Alfoscerate Compared to Placebo in Patients With Degenerative Mild Cognitive Impairment
|
Phase 4 | |
Recruiting |
NCT04121156 -
High Definition Transcranial Direct Current Stimulation (HD-tDCS) in Patients With Mild Cognitive Impairment
|
N/A | |
Recruiting |
NCT03605381 -
MORbidity PRevalence Estimate In StrokE
|
||
Completed |
NCT02774083 -
Cognitive Training Using Feuerstein Instrumental Enrichment
|
N/A | |
Completed |
NCT01315639 -
New Biomarker for Alzheimer's Disease Diagnostic
|
N/A | |
Enrolling by invitation |
NCT06023446 -
Can (Optical Coherence Tomography) Pictures of the Retina Detect Alzheimer's Disease at Its Earliest Stages?
|
||
Completed |
NCT04567745 -
Automated Retinal Image Analysis System (EyeQuant) for Computation of Vascular Biomarkers
|
Phase 1 | |
Recruiting |
NCT05579236 -
Cortical Disarray Measurement in Mild Cognitive Impairment and Alzheimer's Disease
|
||
Completed |
NCT03583879 -
Using Gait Robotics to Improve Symptoms of Parkinson's Disease
|
N/A | |
Terminated |
NCT02503501 -
Intranasal Glulisine in Amnestic Mild Cognitive Impairment and Probable Mild Alzheimer's Disease
|
Phase 2 | |
Not yet recruiting |
NCT03740178 -
Multiple Dose Trial of MK-4334 in Participants With Alzheimer's Clinical Syndrome (MK-4334-005)
|
Phase 1 | |
Active, not recruiting |
NCT05204940 -
Longitudinal Observational Biomarker Study
|
||
Recruiting |
NCT02663531 -
Retinal Neuro-vascular Coupling in Patients With Neurodegenerative Disease
|
N/A | |
Recruiting |
NCT06150352 -
Sleep Apnea, Neurocognitive Decline and Brain Imaging in Patients With Subjective or Mild Cognitive Impairment
|
||
Recruiting |
NCT03507192 -
Effects of Muscle Relaxation on Cognitive Function in Patients With Mild Cognitive Impairment and Early Stage Dementia.
|
N/A |