Clinical Trials Logo

Clinical Trial Summary

Migraine is a leading cause of disability with an estimated prevalence of 12% in Europe. The headache field witnessed a breakthrough since the introduction of specific preventive therapies which proved effective and well tolerated, namely the monoclonal antibodies directed against the Calcitonin Gene Related Peptide (CGRP) pathway (mAbs). Their mechanism of action is still debated. Several Authors claimed that, despite the site of action is peripheral (namely outside of the blood brain barrier), the resulting action may take place at central level. Another valuable hypothesis is that the clinical modifications resulting from mAbs treatment may induce functional modulation of several brain areas. With these premises, the primary aim of the study is to evaluate changes in functional connectivity in patients undergoing preventive mAbs treatment using high density EEG.


Clinical Trial Description

Electroencephalogram (EEG) is widely available as a powerful mean to non-invasively study brain connectivity features in migraine patients. High density EEG, by means of a minimum of 64 up to 256 electrodes, enables to record electrical brain activity with high spatial resolution. Through the analysis of brain oscillations across different frequency bands (from alpha to delta), it can evaluate sensory, pain processing and information integration, contributing to a better definition of baseline features and to detect potential markers or predictors for therapeutic interventions in an era addressed to precision medicine. Previous neurophysiological studies focused on EEG and to assess functional connectivity or spectral analysis in migraine patients. Conventional studies found higher slow wave activity (predominantly theta) in the interictal phase and higher excitability in the visual cortex during visual aura. In 2016 a resting state study showed a predominance of low frequency bands in the ictal phase. The interictal and ictal phases patients also presented a diffuse lower coherence, suggesting low functional connectivity. Furthermore, an altered spatial connectivity for lower alpha-band activities was found in the interictal phases during sensory stimulation by means of HD-EEG, suggesting a thalamocortical dysrhythmia. Nowadays, targeted preventive migraine therapies are available, namely monoclonal antibodies directed against the Calcitonin Gene Related Peptide (CGRP) pathway (mAbs). They demonstrated high efficacy and tolerability in both chronic and episodic migraine. Despite their peripheral site of action (outside of the blood brain barrier), the resulting action may take place at central level or determine clinical modifications leading to a functional modulation of several brain areas. The primary aim of the study is to evaluate changes in functional connectivity in patients undergoing preventive mAbs treatment using HD- EEG and eventual connectivity differences between Responders and Non-Responders. Study design: Patients will undergo visits planned at baseline (T0) and quarterly (T3-T6) during which clinical data is collected and an HD-EEG is performed. Healthy controls will undergo EEG registration once. HD-EEG registration: The investigators will randomly acquire 4 recordings (6 minutes each) in resting-state condition, 2 with opened eyes, and 2 with closed eyes. Resting state FC will be analyzed among six resting state networks (Default mode network, Dorsal attention network, Ventral attention network, Language network , Somatomotor network and Visual network) in the following frequency bands: alfa 8-12 Hz, beta 13-30 Hz, gamma 31-80 Hz, theta 4-7 Hz. delta 1-3 Hz. Acquisition parameters will be: High-Pass: 0.5 Hz; Low-Pass: 100 Hz; Notch: 50 Hz. For analysis of HD-EEG data, the investigators will use a tailored analysis pipe-line that was previously developed and validated to reconstruct neural sources from cortical/subcortical gray matter. EEG signals will be band-pass filtered (1-80 Hz) and down-sampled at 250 Hz. Biological artifacts will be rejected using Independent Component Analysis (ICA). EEG signals will be referenced with a customized version of the Reference Electrode Standardization Technique (REST). A matrix will estimate the relationship between the measured scalp potentials and the dipoles corresponding to brain sources. Sources reconstruction will be performed with the exact low-resolution brain electromagnetic tomography (eLORETA) algorithm Statistical plan: The sample size was computed with the freeware online platform www.openepi.com. As few studies focused on functional connectivity evaluation in migraine, with no studies analyzing longitudinal changes during a specific treatment, the sample size analysis was based on the work of Bjork. The investigators thus considered as clinically meaningful a difference between groups in the theta relative power band equal to 0.04 (±0.04). Considering a two-tailed t-test for the comparison with confidence interval 95%; power: 80%, the minimum suggested sample size was 20 subjects for CM group and 20 subjects for HFEM group. A preliminary normality analysis will be performed to decide whether to use parametric or non-parametric methods, through Shapiro Wilk test. Numerical variables will be described as mean and standard deviation (or median and quartiles if appropriate), categorical variables as raw numbers and percentages. Functional connectivity analyses will be conducted for separate bands and eyes closed registration. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06155123
Study type Observational [Patient Registry]
Source IRCCS National Neurological Institute "C. Mondino" Foundation
Contact
Status Recruiting
Phase
Start date January 14, 2020
Completion date June 2024

See also
  Status Clinical Trial Phase
Completed NCT01432379 - BOTOX® Prophylaxis in Patients With Chronic Migraine
Completed NCT04084314 - Assessment of Prolonged Safety and tOLerability of in Migraine Patients in a Long-term OpeN-label Study Phase 4
Recruiting NCT05048914 - Migraine Abortive Treatment
Completed NCT03662295 - Stroke-like Migraine Attacks After Radiation Treatment (SMART) Syndrome Language Intervention
Completed NCT02766517 - Biomarker Study in Participants With Migraine Early Phase 1
Completed NCT00963937 - Study to Evaluate the Efficacy and Safety of Oral Sumatriptan for the Acute Treatment of Migraine in Children and Adolescents Phase 3
Not yet recruiting NCT03632928 - Day to Day Variation of Pressure Pain Threshold and Muscle Hardness
Completed NCT02559895 - A Multicenter Assessment of ALD403 in Frequent Episodic Migraine Phase 3
Completed NCT01435941 - Non-steroidal Anti-inflammatory Drugs Alone or With a Triptan and Reports of Transition From Episodic to Chronic Migraine N/A
Completed NCT00743015 - Relative Bioavailability of a Single Dose of BI 44370 Tablet During and Between Migraine Attacks Phase 1
Completed NCT01376141 - Drug Use Investigation for IMIGRAN Tablet N/A
Completed NCT02183688 - Acetylsalicylic Acid (ASA) + Paracetamol + Caffeine Combination Compared With ASA + Paracetamol as Well as ASA, Paracetamol, and Caffeine in Headache Patients Phase 3
Completed NCT06061588 - "Potential Effects of Virtual Reality Technology on the Treatment of Migraine-Type Headaches" N/A
Completed NCT03588364 - The Role of Osteopathic Manipulation in the the Management of Post-traumatic Migraine N/A
Completed NCT04091321 - Association Between Chronic Headache and Back Pain With Childbirth
Completed NCT00385008 - TREXIMA and RELPAX Gastric Scintigraphy Inside and Outside a Migraine Phase 3
Active, not recruiting NCT05888298 - Proximal and Distal Approach GON RFT in Migraine N/A
Completed NCT03435185 - Greater Occipital and Supraorbital Nerve Blockade in Migraine Patients N/A
Recruiting NCT06459635 - Migraine Attack Pain Phase Prediction Study
Completed NCT02565186 - An Open-label, Long-term, Safety Study of Lasmiditan for the Acute Treatment of Migraine Phase 3