View clinical trials related to Metastatic Breast Carcinoma.
Filter by:This clinical trial tests the effectiveness of an interactive time-restricted diet intervention (txt4fasting) in reducing neurocognitive decline and improving survival outcomes after stereotactic radiosurgery in patients with breast or lung cancer that has spread to the brain (brain metastases). Lung cancer and breast cancer are the two most frequent causes of brain metastases. The diagnosis of brain metastases is associated with poorer survival and tumor-induced and treatment-related side effects. Stereotactic radiosurgery is a type of external radiation therapy that uses special equipment to position the patient and precisely give a single large dose of radiation to a tumor. Patients who receive stereotactic radiosurgery for brain metastases may experience less neurocognitive side effects than with other types of brain radiation, but may still be at risk for their brain metastases growing, spreading, or getting worse. Patients with obesity and diabetes have been shown to have worse survival and increased radiation-related side effects. Evidence demonstrates that simply changing meal timing can have a positive impact on multiple health outcomes. Time-restricted eating, or prolonged nighttime fasting, has been proven to have positive effects on heart disease risk reduction, weight control management and chemotherapy side effect reduction. Txt4fasting may be effective in decreasing neurocognitive decline and improving survival outcomes in patients undergoing stereotactic radiosurgery for brain metastases from breast or lung cancer.
This phase II trial tests how well stereotactic body radiation therapy (SBRT) works in treating patients with estrogen receptor positive (ER +) breast cancer that has spread from where it first started to other places in the body (metastatic) and has limited disease progression (oligoprogression). Currently, the standard of care for breast cancer patients with oligoprogressive disease is to change systemic therapy when progression occurs. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. SBRT is a type of external radiation therapy that uses special equipment to position a patient and precisely deliver radiation to tumors in the body (except the brain). The total dose of radiation is divided into smaller doses (fractions) given over several days. This type of radiation therapy helps spare normal tissue and has been shown to improve survival. SBRT may kill more tumor cells and allow patients with oligoprogressive ER + metastatic breast cancer to continue taking current systemic treatment. This trial also tests how well ER targeted positron emission tomography (PET)/ computed tomography (CT) imaging, using FES, works in identifying progressive disease in patients with ER + metastatic breast cancer. FES, a radiolabeled substance, binds to estrogen receptors and gives off radiation that can be detected by a PET scan. The PET scan, an established imaging technique that utilizes small amounts of radioactivity attached to very minimal amounts of tracer, FES, forms an image that shows where tumor cells with estrogen receptors can be found in the body. CT images use x-rays to provide an exact outline of organs. FES PET/CT may improve identification of progressive disease in patients with ER + metastatic breast cancer.
This study is being done to create a resource of samples and information that can be used to improve our understanding of the development, progression and treatment of recurrent or metastatic breast cancer or male breast cancer.
This study evaluates disparities and barriers in cancer care delivery and outcomes in women of color by identifying socioeconomic variables that may be related to the inequity. Social determinants of health, or the conditions in which people live, work, and play, have a profound effect on health outcomes. This research is being done to understand whether social determinants of health factors like employment, household income, and home ownership affect access to care services and outcomes for patients with metastatic breast cancer who receive their cancer treatment at Sidney Kimmel Cancer Center at Jefferson Health.
The purpose of this study is to see whether 18F-FDHT PET/MRI scans are an effective way of identifying AR-positive breast cancer.
This phase II trial tests the safety, side effects, and best dose of monosialotetrahexosylganglioside (GM1) and whether it works in reducing or preventing chemotherapy-induced peripheral neuropathy (CIPN) in patients with breast cancer that has spread from where it first started (primary site) to other places in the body (metastatic) who are receiving treatment with paclitaxel. Chemotherapy drugs, such as paclitaxel, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Exposure to chemotherapy drugs like paclitaxel may cause a side effect called CIPN, which is a condition of weakness, numbness, and pain from nerve damage (usually in the hands and feet). GM1 is a part of the body's natural system that insulates nerves and helps to protect nerves from damage. Giving GM1 may help reduce or prevent CIPN in breast cancer patients receiving treatment with paclitaxel.
This clinical trial evaluates the safety and feasibility of tumor treating fields (TTF) in the treatment of spinal leptomeningeal disease in patients with breast cancer that has spread from where it first started (primary site) to other places in the body (metastatic). Patients wear the portable Novo TTF-200T device that produces electric fields to target areas on the body to stop the growth of tumor cells. The information from this study will help researchers develop a better treatment for leptomeningeal metastases in the future.
The purpose of this study is to see if using Stereotactic Body Radiation Therapy/SBRT to treat a single metastatic site where cancer has worsened may be an effective treatment for people with oligometastatic breast cancer. Participants will stay on their usual drug therapy while they receive SBRT. This combination of SBRT to a single metastatic site and usual drug therapy may prevent participants' cancer from worsening in other metastatic sites or spreading.
This clinical trial evaluates the benefits of a portable scalp cooling system (PSCS) for improving chemotherapy-induced hair loss in patients with breast cancer that has spread to other places in the body (metastatic) and are undergoing taxane-based chemotherapy. The PSCS is a new system designed to reduce chemotherapy induced hair loss. The PSCS is designed as a portable unit, allowing patients to leave the infusion center after chemotherapy is completed and finish scalp cooling at home. PSCS may help improve chemotherapy-induced hair loss in patients with metastatic breast cancer receiving chemotherapy.
This clinical trial examines an investigational scan (64Cu-DOTA-trastuzumab positron emission tomography [PET]/magnetic resonance imaging [MRI]) in imaging patients with HER2+ breast cancer that has spread to the brain (brain metastasis). Diagnostic procedures, such as 64Cu-DOTA-trastuzumab PET/MRI, may help find HER2+ breast cancer that has spread to the brain and determine whether cancer in the brain takes up trastuzumab, which may predict for response to trastuzumab deruxtecan (the standard of care chemotherapy).