View clinical trials related to Metabolism.
Filter by:Background: Measuring what people eat is a challenge in nutrition research. Traditional methods, like food diaries, rely on self-reporting of individuals, and suffer from poor accuracy and recall bias. Aims: This project aims to identify physiological biomarkers related to food and energy intake, which may be used to develop an objective tool to estimate individuals' food intake in future. Eating behaviours are accompanied by significant physiological changes such as skin temperature, blood oxygen saturation, pulse rate etc. The investigators intend to investigate whether monitoring these physiological changes can help us estimate eating behaviour, such as meal size, eating speed, and duration of meals. Study design: Ten healthy adults will be invited for two study visits at NIHR Imperial Clinical Research Facility. Each visit will last for approximately 2 hr. They will consume a high- and low-calorie meal designed by nutritional researchers in a randomised order. During eating events, the investigators will track their physiological changes via a bedside monitor and wearable sensors. Blood samples will be taken from participants to measure their glycaemic response. Associations between energy load, glycaemic response, and physiological changes will be investigated. Our findings may promote an accelerated development of a wearable tool for dietary assessment in future.
This study investigates the potential of vericiguat, a soluble guanylate cyclase stimulator, to improve cardiometabolic health in obese Black individuals with insulin resistance by directly enhancing cyclic guanosine monophosphate (cGMP) activity. Given that this population has been shown to have lower cGMP activity and the association of lower cGMP activity with increased cardiometabolic disease risk, the proposed study hypothesizes that augmenting cGMP activity in obese individuals will improve insulin sensitivity and energy expenditure. This study is a placebo-controlled randomized trial involving 200 Black obese participants with insulin resistance, assessing the effects of vericiguat on insulin sensitivity, resting, and exercise-induced energy expenditure over 12 weeks. Additionally, it will explore changes in brown adipose tissue and gene expression related to energy metabolism in white adipose tissue, aiming to provide insights into how increasing cGMP activity may improve cardiometabolic health in Black obese individuals.
Many information is available regarding human adaptations to cold or hypoxia. Adaptations to these environments and physical exercise constitute responses to physiological stress aimed at amplifying the organism's reactions and improving its performance. However, studies conducted so far to understand these adaptations and their underlying mechanisms have been organized in a dissociated manner, with each study focusing on only one of these specific situations (cold, hypoxia, or exercise). Understanding cross-adaptations is crucial, as human beings are often simultaneously exposed to several of these stimuli, and understanding this cross-exposure can be considered a prerequisite for pre-acclimatization strategies to these different environments. Cross-adaptations has been defined as follows: "It simply involves considering that long-term exposure (either continuous or intermittent) to a given unfavorable environment not only increases tolerance to that particular environment but also leads to gains or losses of tolerance to other unfavorable factors that the adapted organism had never encountered before." When specifically examining cross-adaptations to cold and hypoxia, only one study focusing on the human model is available. The lack of perspectives and positions regarding the results calls for further investigations. The main objective of this study is to assess the effect of repeated exposures to cryostimulation on the variation of the respiratory exchange ratio in hypoxia during exercise.
This prospective observational randomized study aims to determine energy, protein intake and gastrointestinal tolerance while using enteral nutrition formulas with very high protein content and enteral nutrition formulas with normal protein content. - Differences regarding achieving protein and calorie daily targets when using enteral nutrition formulas with different protein content - Differences regarding residual gastric volume when using enteral nutrition formulas with different protein content - Differences regarding body composition when using enteral nutrition formulas with different protein content
Microbiota is known to effect metabolism. This is pilot study to get status of microbiota from normal control. It will be compared to data from specific patients in ICU via further study.
The purpose of this study is to evaluate metabolic parameters in previously sedentary individuals before and after eccentric endurance training (hiking downwards). Study participants will regularly hike downwards over a difference in altitude of 540 meters during 8 weeks. For the opposite way, a cable car will be used. Metabolic profiles will be obtained at baseline and after the 8 weeks period of eccentric endurance exercise.