Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT03355469
Other study ID # 19364
Secondary ID 1R01HL130296-01A
Status Recruiting
Phase Phase 2/Phase 3
First received
Last updated
Start date August 7, 2017
Est. completion date January 30, 2025

Study information

Verified date April 2023
Source Rutgers, The State University of New Jersey
Contact Applied Metabolism and Physiology Lab
Phone 434-243-8677
Email slm4ps@virginia.edu
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Health organizations recommend exercise in an intensity based manner to promote cardiovascular adaptation and prevent disease. Metformin is a common anti-diabetes medication that reduces future type 2 diabetes and cardiovascular disease (CVD) risk. However, the optimal dose of exercise to be combined with metformin for vascular health remains unknown. The purpose of this study is to evaluate whether combining high or low intensity exercise with metformin has the potential to outperform either exercise intensity alone on blood flow across the arterial tree as well as impact insulin action in individuals with metabolic syndrome. Identification of such outcomes will indicate 1) whether and how metformin should be combined with physical activity for CVD prevention, 2) provide the first indication of whether exercise intensity reduces CVD risk via multi-level vasculature function vs. metabolic insulin action, and 3) provide a rational early treatment for people with metabolic syndrome to prevent/treat type 2 diabetes and CVD.


Other known NCT identifiers
  • NCT04817787

Recruitment information / eligibility

Status Recruiting
Enrollment 80
Est. completion date January 30, 2025
Est. primary completion date December 31, 2024
Accepts healthy volunteers No
Gender All
Age group 40 Years to 70 Years
Eligibility Inclusion Criteria: - Male or female >40 and <70 years old. - Has a body mass index >27 and <47 kg/m2. - Not diagnosed with Type 2 diabetes. - Not currently engaged in > 60 min/wk of exercise - Meet at least 3 of 5 National Cholesterol Education Adult Treatment Panel III Metabolic Syndrome criteria: - Increased waist circumference (=102 cm in men; =88 cm in women) - Elevated triglycerides (=150 mg/dl), or on medication for treating the condition - Reduced HDL-cholesterol (<40mg/dl in men, <50 mg/dl in women), or on medication for treating the condition - High blood pressure (=130 mmHg systolic or =85mmHg diastolic), or on medication for treating the condition - Elevated fasting glucose (=100 mg/dl), or on medication for treating the condition Exclusion Criteria: - Morbidly obese patients (BMI >47 kg/m2) and overweight/lean patients (BMI <27 kg/m2) - Evidence of type 1 diabetes and diabetics requiring insulin therapy. - Subjects who have not been weight stable (>2 kg weight change in past 3 months) - Subjects who have been recently active (>30 min of moderate/high intensity exercise, 2 times/week). - Subjects who are smokers or who have quit smoking <5 years ago - Subjects prescribed metformin or have taken metformin within 1 year. - Subjects with abnormal estimated glomerular filtration rate (eGFR). - Hypertriglyceridemic (>400 mg/dl) and hypercholesterolemic (>260 mg/dl) subjects - Hypertensive (>160/100 mmHg) - Subjects currently taking medications that affect heart rate and rhythm (i.e. Ca++ channel blockers, nitrates, alpha- or beta-blockers). - Subjects with a history of significant metabolic, cardiac, congestive heart failure, cerebrovascular, hematological, pulmonary, gastrointestinal, liver, renal, or endocrine disease or cancer that in the investigator's opinion would interfere with or alter the outcome measures, or impact subject safety. - Pregnant (as evidenced by positive pregnancy test) or nursing women - Subjects with contraindications to participation in an exercise training program - Currently taking active weight suppression medication (e.g. phentermine,orlistat, lorcaserin, naltrexone-bupropion in combination, liraglutide, benzephetamine, diethylpropion, phendimetrazine) - Known hypersensitivity to perflutren (contained in Definity)

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Low Intensity Exercise + Metformin
Low Intensity exercise (LoEx) measured by a percentage of maximal heart rate in combination with metformin.
High Intensity Exercise + Metformin
High Intensity exercise (HiEx) measured by a percentage of maximal heart rate in combination with metformin.
Low Intensity Exercise + Placebo
Low Intensity exercise (LoEx) measured by a percentage of maximal heart rate in combination with placebo.
High Intensity Exercise + Placebo
High Intensity exercise (HiEx) measured by a percentage of maximal heart rate in combination with placebo.

Locations

Country Name City State
United States University of Virginia Charlottesville Virginia

Sponsors (2)

Lead Sponsor Collaborator
Rutgers University National Heart, Lung, and Blood Institute (NHLBI)

Country where clinical trial is conducted

United States, 

References & Publications (30)

Anderson TJ, Charbonneau F, Title LM, Buithieu J, Rose MS, Conradson H, Hildebrand K, Fung M, Verma S, Lonn EM. Microvascular function predicts cardiovascular events in primary prevention: long-term results from the Firefighters and Their Endothelium (FATE) study. Circulation. 2011 Jan 18;123(2):163-9. doi: 10.1161/CIRCULATIONAHA.110.953653. Epub 2011 Jan 3. — View Citation

Barrett EJ, Wang H, Upchurch CT, Liu Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am J Physiol Endocrinol Metab. 2011 Aug;301(2):E252-63. doi: 10.1152/ajpendo.00186.2011. Epub 2011 May 24. — View Citation

Bateman LA, Slentz CA, Willis LH, Shields AT, Piner LW, Bales CW, Houmard JA, Kraus WE. Comparison of aerobic versus resistance exercise training effects on metabolic syndrome (from the Studies of a Targeted Risk Reduction Intervention Through Defined Exercise - STRRIDE-AT/RT). Am J Cardiol. 2011 Sep 15;108(6):838-44. doi: 10.1016/j.amjcard.2011.04.037. Epub 2011 Jul 7. — View Citation

Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ. Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes. 2006 May;55(5):1436-42. doi: 10.2337/db05-1373. — View Citation

Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002 Oct 15;106(16):2085-90. doi: 10.1161/01.cir.0000033824.02722.f7. — View Citation

DeFronzo RA, Abdul-Ghani M. Assessment and treatment of cardiovascular risk in prediabetes: impaired glucose tolerance and impaired fasting glucose. Am J Cardiol. 2011 Aug 2;108(3 Suppl):3B-24B. doi: 10.1016/j.amjcard.2011.03.013. — View Citation

Donley DA, Fournier SB, Reger BL, DeVallance E, Bonner DE, Olfert IM, Frisbee JC, Chantler PD. Aerobic exercise training reduces arterial stiffness in metabolic syndrome. J Appl Physiol (1985). 2014 Jun 1;116(11):1396-404. doi: 10.1152/japplphysiol.00151.2014. Epub 2014 Apr 17. — View Citation

Eggleston EM, Jahn LA, Barrett EJ. Early microvascular recruitment modulates subsequent insulin-mediated skeletal muscle glucose metabolism during lipid infusion. Diabetes Care. 2013 Jan;36(1):104-10. doi: 10.2337/dc11-2399. Epub 2012 Sep 6. — View Citation

Gokce N, Keaney JF Jr, Hunter LM, Watkins MT, Nedeljkovic ZS, Menzoian JO, Vita JA. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol. 2003 May 21;41(10):1769-75. doi: 10.1016/s0735-1097(03)00333-4. — View Citation

Green DJ, Eijsvogels T, Bouts YM, Maiorana AJ, Naylor LH, Scholten RR, Spaanderman ME, Pugh CJ, Sprung VS, Schreuder T, Jones H, Cable T, Hopman MT, Thijssen DH. Exercise training and artery function in humans: nonresponse and its relationship to cardiovascular risk factors. J Appl Physiol (1985). 2014 Aug 15;117(4):345-52. doi: 10.1152/japplphysiol.00354.2014. Epub 2014 Jun 19. — View Citation

Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Fernando Costa. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement: Executive Summary. Crit Pathw Cardiol. 2005 Dec;4(4):198-203. doi: 10.1097/00132577-200512000-00018. No abstract available. — View Citation

Keske MA, Clerk LH, Price WJ, Jahn LA, Barrett EJ. Obesity blunts microvascular recruitment in human forearm muscle after a mixed meal. Diabetes Care. 2009 Sep;32(9):1672-7. doi: 10.2337/dc09-0206. Epub 2009 Jun 1. — View Citation

Laurent S, Katsahian S, Fassot C, Tropeano AI, Gautier I, Laloux B, Boutouyrie P. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. 2003 May;34(5):1203-6. doi: 10.1161/01.STR.0000065428.03209.64. Epub 2003 Apr 3. — View Citation

Liu J, Jahn LA, Fowler DE, Barrett EJ, Cao W, Liu Z. Free fatty acids induce insulin resistance in both cardiac and skeletal muscle microvasculature in humans. J Clin Endocrinol Metab. 2011 Feb;96(2):438-46. doi: 10.1210/jc.2010-1174. Epub 2010 Nov 3. — View Citation

Liu Z, Liu J, Jahn LA, Fowler DE, Barrett EJ. Infusing lipid raises plasma free fatty acids and induces insulin resistance in muscle microvasculature. J Clin Endocrinol Metab. 2009 Sep;94(9):3543-9. doi: 10.1210/jc.2009-0027. Epub 2009 Jun 30. — View Citation

Malin SK, Braun B. Impact of Metformin on Exercise-Induced Metabolic Adaptations to Lower Type 2 Diabetes Risk. Exerc Sport Sci Rev. 2016 Jan;44(1):4-11. doi: 10.1249/JES.0000000000000070. — View Citation

Malin SK, Gerber R, Chipkin SR, Braun B. Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care. 2012 Jan;35(1):131-6. doi: 10.2337/dc11-0925. Epub 2011 Oct 31. — View Citation

Malin SK, Niemi N, Solomon TP, Haus JM, Kelly KR, Filion J, Rocco M, Kashyap SR, Barkoukis H, Kirwan JP. Exercise training with weight loss and either a high- or low-glycemic index diet reduces metabolic syndrome severity in older adults. Ann Nutr Metab. 2012;61(2):135-41. doi: 10.1159/000342084. — View Citation

Malin SK, Nightingale J, Choi SE, Chipkin SR, Braun B. Metformin modifies the exercise training effects on risk factors for cardiovascular disease in impaired glucose tolerant adults. Obesity (Silver Spring). 2013 Jan;21(1):93-100. doi: 10.1002/oby.20235. — View Citation

Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001 Apr;37(5):1344-50. doi: 10.1016/s0735-1097(01)01129-9. — View Citation

Mestek ML, Westby CM, Van Guilder GP, Greiner JJ, Stauffer BL, DeSouza CA. Regular aerobic exercise, without weight loss, improves endothelium-dependent vasodilation in overweight and obese adults. Obesity (Silver Spring). 2010 Aug;18(8):1667-9. doi: 10.1038/oby.2009.467. Epub 2010 Jan 7. — View Citation

Patel C, Ghanim H, Ravishankar S, Sia CL, Viswanathan P, Mohanty P, Dandona P. Prolonged reactive oxygen species generation and nuclear factor-kappaB activation after a high-fat, high-carbohydrate meal in the obese. J Clin Endocrinol Metab. 2007 Nov;92(11):4476-9. doi: 10.1210/jc.2007-0778. Epub 2007 Sep 4. — View Citation

Phillips SA, Mahmoud AM, Brown MD, Haus JM. Exercise interventions and peripheral arterial function: implications for cardio-metabolic disease. Prog Cardiovasc Dis. 2015 Mar-Apr;57(5):521-34. doi: 10.1016/j.pcad.2014.12.005. Epub 2014 Dec 18. — View Citation

Potteiger JA, Claytor RP, Hulver MW, Hughes MR, Carper MJ, Richmond S, Thyfault JP. Resistance exercise and aerobic exercise when paired with dietary energy restriction both reduce the clinical components of metabolic syndrome in previously physically inactive males. Eur J Appl Physiol. 2012 Jun;112(6):2035-44. doi: 10.1007/s00421-011-2174-y. Epub 2011 Sep 23. — View Citation

Selvin E, Bolen S, Yeh HC, Wiley C, Wilson LM, Marinopoulos SS, Feldman L, Vassy J, Wilson R, Bass EB, Brancati FL. Cardiovascular outcomes in trials of oral diabetes medications: a systematic review. Arch Intern Med. 2008 Oct 27;168(19):2070-80. doi: 10.1001/archinte.168.19.2070. — View Citation

Swift DL, Weltman JY, Patrie JT, Saliba SA, Gaesser GA, Barrett EJ, Weltman A. Predictors of improvement in endothelial function after exercise training in a diverse sample of postmenopausal women. J Womens Health (Larchmt). 2014 Mar;23(3):260-6. doi: 10.1089/jwh.2013.4420. Epub 2013 Dec 3. — View Citation

Tjonna AE, Lee SJ, Rognmo O, Stolen TO, Bye A, Haram PM, Loennechen JP, Al-Share QY, Skogvoll E, Slordahl SA, Kemi OJ, Najjar SM, Wisloff U. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008 Jul 22;118(4):346-54. doi: 10.1161/CIRCULATIONAHA.108.772822. Epub 2008 Jul 7. — View Citation

Vincent MA, Clerk LH, Lindner JR, Price WJ, Jahn LA, Leong-Poi H, Barrett EJ. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metab. 2006 Jun;290(6):E1191-7. doi: 10.1152/ajpendo.00497.2005. — View Citation

Vitale C, Mercuro G, Cornoldi A, Fini M, Volterrani M, Rosano GM. Metformin improves endothelial function in patients with metabolic syndrome. J Intern Med. 2005 Sep;258(3):250-6. doi: 10.1111/j.1365-2796.2005.01531.x. — View Citation

Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010 Mar 30;55(13):1318-27. doi: 10.1016/j.jacc.2009.10.061. — View Citation

* Note: There are 30 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Change in Flow Mediated Dilation of brachial artery Measure of blood flow At 0 and 16 weeks
Secondary Change in Metabolic Insulin Sensitivity by the Euglycemic Clamp Measure of glucose metabolism At 0 and 16 weeks
Secondary Change in Post Ischemic Flow Velocity in brachial artery Measure of blood flow At 0 and 16 weeks
Secondary Change in Contrast Enhanced Ultrasound Measure of Microvascular blood flow At 0 and 16 weeks
Secondary Change in Pulse Wave Velocity Measure of Arterial Stiffness At 0 and 16 weeks
Secondary Change in Augmentation Index Measure of Arterial Stiffness At 0 and 16 weeks
Secondary Change in Ambulatory Blood Pressure Measure of Vascular health At 0 and 16 weeks
See also
  Status Clinical Trial Phase
Recruiting NCT04635202 - Effect of Elliptical Training on Metabolic Homeostasis in Metabolic Syndrome N/A
Completed NCT04053686 - An Intervention to Reduce Prolonged Sitting in Police Staff N/A
Completed NCT05343858 - Pilot Study to Evaluate the Effect of Two Microalgae Consumption on Metabolic Syndrome N/A
Active, not recruiting NCT05891834 - Study of INV-202 in Patients With Obesity and Metabolic Syndrome Phase 2
Recruiting NCT05040958 - Carotid Atherosclerotic Plaque Load and Neck Circumference
Completed NCT03644524 - Heat Therapy and Cardiometabolic Health in Obese Women N/A
Active, not recruiting NCT02500147 - Metformin for Ectopic Fat Deposition and Metabolic Markers in Polycystic Ovary Syndrome (PCOS) Phase 4
Recruiting NCT03227575 - Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control N/A
Recruiting NCT05972564 - The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function Phase 1/Phase 2
Completed NCT03289897 - Non-invasive Rapid Assessment of NAFLD Using Magnetic Resonance Imaging With LiverMultiScan N/A
Recruiting NCT05956886 - Sleep Chatbot Intervention for Emerging Black/African American Adults N/A
Completed NCT06057896 - Effects of Combined Natural Molecules on Metabolic Syndrome in Menopausal Women
Active, not recruiting NCT03613740 - Effect of Fucoxanthin on the Metabolic Syndrome, Insulin Sensitivity and Insulin Secretion Phase 2
Completed NCT04498455 - Study of a Prebiotic Supplement to Mitigate Excessive Weight Gain Among Physicians in Residency Phase 4
Completed NCT05688917 - Green Coffee Effect on Metabolic Syndrome N/A
Completed NCT04117802 - Effects of Maple Syrup on Gut Microbiota Diversity and Metabolic Syndrome N/A
Completed NCT03697382 - Effect of Daily Steps on Fat Metabolism N/A
Completed NCT03241121 - Study of Eating Patterns With a Smartphone App and the Effects of Time Restricted Feeding in the Metabolic Syndrome N/A
Completed NCT04509206 - Virtual Teaching Kitchen N/A
Completed NCT05124847 - TREating Pediatric Obesity N/A