View clinical trials related to Meningioma.
Filter by:The use of radiotherapy for irradiation of all or part of the brain, in the treatment of extracerebral intracranial neoplasms, is growing rapidly, both due to the increase in diagnoses of primary tumors thanks to new imaging methods, and for the increase in the number of new cases of cancer. Cerebral neurotoxicity linked to radiation treatment is an adverse effect that is not always accurately evaluated based on the prognosis of some brain pathologies. The progression of diagnostic and therapeutic methods has recently generated a modification of therapeutic protocols and some categories of radiotreated patients may incur acute, subacute and late effects. These include manifestations of acute neurological deterioration, more frequently effects classified as sub-acute such as "somnolence syndrome" (from 2 to 6 weeks after the end of treatment) and finally late effects, which manifest themselves as a variety of neurological deficits in particular a decline in cognitive brain functions, probably linked to a direct effect on neurons or the result of an imbalance in the connections between white matter and cerebral gray matter. In relation to the myelin function of conduction of axonal transmission, the result of radio-induced damage in this site would manifest itself with a significant reduction in the speed of transmission of the impulse and consequently with a dramatic worsening of cognitive processes. In particular, clinically, radiologically and in some cases also from a pathological point of view, the damage from rays on the brain parenchyma would have aspects similar to those of a degenerative pathology such as Alzheimer's disease. These effects are usually measured on the patient by subjective assessments or using neuropsychological tests. The use, not only experimental, of neurophysiological methods for the study of cognitive processes in neurology and in degenerative disorders such as dementia is increasingly frequent. These methods are based on the study of specific neuronal circuits involved in the cognitive functions of the human brain in normal conditions and in the presence of pathology. Among the techniques that allow an analysis of molecular alterations in vivo there are scintigraphic ones, i.e. nuclear medicine ones, including single photon emission tomography (SPET) and positron emission tomography (PET).
This phase II trial tests the effect of decreasing (tapering) doses of dexamethasone on steroid side effects in patients after surgery to remove (craniotomy) a brain tumor. Steroids are the gold standard post-surgery treatment to reduce swelling (edema) at the surgical site to reduce neurological symptoms. Although, corticosteroids reduce edema, they have side effects including high blood sugar, high blood pressure, and can impair wound healing. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response. It also works to treat other conditions by reducing swelling and redness. Tapering doses dexamethasone may decrease steroid side effects without increasing the risk of edema in patients with brain tumors after a craniotomy.
Meningioma, the most common intracranial primary tumor of the central nervous system predominantly affects people in their fifties. Meningiomas are generally subdivided into two entities: a priori non-aggressive meningiomas (grade 1), and meningiomas at high risk of aggressive behavior (grade 2/atypical and 3/anaplastic). The current conventional treatments for meningioma are surgery and radiotherapy. When these treatments are no longer feasible, meningiomas are considered refractory irrespectively of grade, and in these rare entities, the therapeutic arsenal is reduced to the few treatments that have shown limited efficacy. Refractory, and particularly grades 2 and 3 meningiomas, have very poor prognoses with a progression-free survival at 6 months (PFS-6) of 26%. The European Response Assessment in Neuro-Oncology group (RANO) recommends that in any new, grades 2 and 3 meningioma, therapy that achieves a PFS-6 >30% in phase II trials be considered promising. In Nuclear Medicine, Peptide Receptor Radionuclide Therapy (PRRT) with 177Lu-DOTATATE, currently used on a compassionate basis in refractory meningioma, deploys an octreotide-like effect, and appears very promising, with preliminary PFS-6 of 94% and an overall survival at 12 months (OS-12) of 88% in grade 1 meningioma. However, its PFS-6 is reduced to 28% with an OS-12 of 65% in WHO grades 2 and 3 meningioma. Recently the non-radiolabeled octreotide and everolimus combination however achieved a PFS-6 of 55% and an OS-12 of 75% in a population of 90% WHO grades 2 and 3 meningioma.
While surgical resection remains the primary treatment approach for symptomatic or growing meningiomas, radiotherapy represents an auspicious alternative in patients with meningiomas not safely amenable to surgery. Biopsies are often omitted in light of potential postoperative neurological deficits, resulting in a lack of histological grading and (molecular) risk stratification. In this prospective explorative biomarker study, extracellular vesicles in the bloodstream will be investigated in patients with macroscopic meningiomas to identify a biomarker for molecular risk stratification and disease monitoring.
For the purpose of this research, investigator will constitute several cohorts of patients, treated either by intensity-modulated radiotherapy, stereotactic radiotherapy or proton-therapy. This will allow better understanding the cognitive and anatomical damages caused by new radiotherapy techniques and better understanding how ionising radiation (X-rays or protons) acts in the long term on brain tissue. Longitudinal follow-up will be multimodal, based on yearly multi-parametric brain MRI to assess morphological changes, in relation with dosimetric data as well as neuropsychological performances, health-related quality of life, anxiety and depression disorders, memory tasks, and socio-professional reintegration. This will notably make it possible to evaluate the relationship between dosimetric data, age at the time of treatment, region of the brain irradiated, type of radiation used, dose per fraction, neurocognitive and neuro-anatomical consequences. A Normal Tissue Control Probability (NTCP) model will be also developed. Overall, the results of this study should contribute to the improvement of treatment techniques, in particular by preserving as much as possible the significant cerebral zones (hippocampi, frontal lobe, sub-ventricular zones, etc.), and to the management of patients by proposing appropriate support measures. In the proton-therapy cohort, evaluations will make it possible to establish more precisely the place that this new irradiation strategy should occupy in the management of low grade meningioma. Importantly, investigator have planned to constitute a last cohort, with subjects free of any neurological disease, to make it easier the interpretation of cognitive performances over time among patients in the three brain radiation cohorts.
This is a Pilot/Phase I clinical study of hyperpolarized 13C (HP 13C) pyruvate injection that includes the acquisition of magnetic resonance (MR) data performed on participants with meningioma to evaluate metabolism and aid in the non-invasive characterization of aggressive tumor behavior
The goal of this clinical trial is to learn about treatment for a type of brain tumor called a meningioma. This study will enroll two groups of people. One group will be for people who will receive surgery to remove their brain tumor. The other group will be for people who have previously received treatment for their brain tumor but do not have any other available options for treatment. The primary goals of this study are: 1. To measure how much of the study drug is present in tumor tissue taken from patients during surgery to remove their brain tumor 2. To measure the length of time between a study participant's first dose of study treatment until the time when their brain tumor gets worse or their death
This study is being done to learn about how an investigational drug called abemaciclib works in treating patients with a newly-diagnosed grade 3 meningioma. Abemaciclib is a drug that is approved by the FDA, but not for brain tumors. Participants who consent to the trial will have surgical tissue collected from the planned surgical resection and tested. If the tissue shows positive results for RB cells and participants are qualified, they will be enrolled and receive study treatment two to five weeks after completing standard-of-care radiation therapy. This is a randomized clinical trial which means that participants will be randomly assigned to a treatment based on chance, like a flip of a coin. Neither the participant nor the researcher chooses the assigned group. Randomization will help the researchers study how the drug works by comparing the difference between the study drug and the placebo and how they work in treating brain tumors. This is a double-blinded study, which means that neither the participant nor the study team will know which treatment the participant is receiving.
Cavernous sinus meningiomas are close to optic nerve, pituitary gland, cranial nerve, and hippocampi. The doses delivered to these structures are crucial and radiotherapy of cavernous sinus meningiomas exposes patients to late secondary effects (pituitary deficit, nerve palsy, cognitive impairment…). In 2012, Gondi reported that a dose given to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. There is no published or recruiting prospective study evaluating the impact of proton-therapy or conventional irradiation on neurocognitive function for meningioma patients. Notably, long-term cognitive or ocular impact of these modern irradiation schemes remains poorly known. Yet, these patients had a long life-expectancy, and are at risk of developing long-term sequelae. Thus, according to its ballistic advantage, an improvement of patient functional outcomes and a reduction of neurocognitive long-term toxicity are expected if tissue sparing proton-therapy is used. In this context, a randomized prospective study, evaluating long-term toxicity of these two irradiation modalities (Proton Therapy (PRT) and photon radiotherapy (XRT)) seems crucial to further assess proton-therapy indication for these patients. Although literature reports excellent outcomes for intracranial meningioma patients treated by proton-therapy, none of the eight retrospective studies found in the literature used an accurate and full evaluation of long-term toxicity
【Background】For cranial-irradiation-naive patients with intracranial meningiomas at risk of local recurrence, the administration of conformal cranial radiotherapy can enhance tumor control in the current era of modern radiotherapeutic techniques. Life expectancy in patients with intracranial meningiomas, particularly non-malignant meningiomas (WHO grade I and II) is essentially similar to people of general population. However, RT-related neurocognitive function (NCF) sequelae are potentially and seriously a concern which should not be ignored. In terms of the natural course of cranial irradiation-induced NCF decline, it might vary considerably according to the specific domains which are selected to be measured. Early neurocognitive decline principally involves impairments of episodic memory, which is significantly associated with functions of the hippocampus. Additionally, the extent of changes in hippocampal volume after local irradiation may be associated with the hippocampal dosimetry. This study thus aims to investigate the potential cause-effect relationship between the hippocampal dosimetry and radiological outcomes represented by the volumetric changes regarding the contralateral hippocampus; furthermore, the correlation between radiological outcomes and neurocognitive endpoints will be examined and clarified. 【Methods】Patients with cranial-RT-naive intracranial meningiomas may be eligible and therefore enrolled in this prospective study addressing both radiological outcomes and neurocognitive endpoints. All eligible and recruited patients should receive baseline volumetric brain MRI examination and baseline neurobehavioral assessment. Subsequently, conformal cranial irradiation in the era of modern radiotherapeutic techniques (including hypofractionated stereotactic radiotherapy, proton beam therapy volumetric modulated arc therapy) will be utilized in order to reduce the dose irradiating the contralateral hippocampus and other relevant organs at risk. The prescribed dose schemes for treating patients with intracranial meningioma depend on the decision of the radiation oncologist in charge and follow the treatment guidelines at our cancer center. Accordingly, a battery of neurocognitive measures, which includes 9 standardized neuropsychological tests categorized into 5 NCF domains (e.g., executive functions, verbal & non-verbal memory, working memory, psychomotor speed, and amygdala-related emotion recognition), is used to evaluate neurocognitive performances longitudinally for our registered patients. There will be two co-primary outcome measures in the current study. The main primary outcome will be the correlation between the mean hippocampal dose and the extent of change in hippocampal volume at 6 months after the course of cranial RT. The other primary endpoint will be 6-month cognitive-deterioration-free survival. 【Expected Results】This prospective observational cohort study aims to explore and investigate the cause-effect relationship between the hippocampal dosimetry (i.e., mean dose irradiating the hippocampus, particularly the one contralateral to the lateralization of intracranial meningioma) and the extent of hippocampal atrophy signifying one of the measures regarding radiological outcomes. Simultaneously, predefined standardized neurocognitive outcome measures such as hippocampus-related memory functions and amygdala-related emotion recognition will be obtained prospectively and longitudinally in order to examine whether any meaningfully significant correlation exists between the above radiological outcome measures and neurocognitive endpoints. The mutual associations among hippocampal dosimetry, radiological outcomes including the MRI-delineated hippocampal volume, and neurocognitive endpoints including hippocampus-related verbal/non-verbal memory functions will be examined thoroughly.