Clinical Trials Logo

Clinical Trial Summary

The purpose of this trial is to assess the effect of vitamin D supplementation on recurrence in resected stage II melanoma patients.


Clinical Trial Description

Cancer chemoprevention uses natural, synthetic, or biologic chemical agents to reverse, suppress, or prevent carcinogenic progression (Sporn MB Cancer Res 1976). Genetic changes exist throughout the field and increase the likelihood that one or more premalignant and malignant lesions may develop within that field. Multistep carcinogenesis describes a stepwise accumulation of alterations, both genotypic and phenotypic. Arresting one or several of the steps may impede or delay the development of cancer. Several epidemiological, pre-clinical and clinical studies support Vitamin D as preventive and therapeutic cancer agent, for a wide spectrum of cancer. Calcitriol (1,25-dihydroxyvitamin D [1,25(OH) D]), the hormonal derivative of vitamin D, has been established since the 1980s as an antiproliferative and prodifferentiation agent, and as a proapoptotic agent and an inhibitor of cell migration, which may imply an inhibitory effect in cancer. Vitamin D is more like a hormone and not strictly a vitamin according to the classical criteria that an essential nutrient is a substance the body cannot synthesise in sufficient quantities itself. Also, vitamins are usually involved in biochemical reactions, while 1_,25-dihydroxyvitamin D exerts its action via VDR. Vitamin D is a group of fat-soluble prohormones, the two major forms of which are vitamin D2 (or ergocalciferol) and vitamin D3 (or cholecalciferol). Endogenous synthesis of vitamin D3 takes place in the skin under the influence of ultra violet B (UVB) radiation. Exogenous vitamin D2 or D3 comes from dietary intake. The overall vitamin D intake is the sum of cutaneous vitamin D and nutritional vitamin D and D. Vitamin D on its own has no physiological action. To be physiologically active, vitamin D must first be hydroxylated in the liver by the enzyme 25-hydroxylase, encoded by CYP27A1 (also called the 25-hydroxylase) in 25-hydroxyvitamin D or 1,25-hydroxyvitamin D (1,25-hydroxyvitamin D). The 25-hydroxyvitamin D is inactive, and an additional hydroxylation in the kidney by the enzyme 1_-hydroxylase, encoded by CYP27B1, (also called 1_-hydroxylase) is necessary for production of the physiologically active vitamin D metabolite, the 1_,25-dihydroxyvitamin D (calcitriol). When 1,25(OH) D is sufficiently available, the enzyme mitochondrial protein encoded by CYP24A1 metabolises the 1_,25-dihydroxyvitamin D in 1_,24,25-dihydroxyvitamin D, which is further catabolised to calcitroic acid. 25(OH)D and 1,25(OH)2D are transported in serum by the vitamin D-binding protein (gene name: GC, group-specific component). Ahn systematically investigated the association of 48 SNPS in four vitamin D metabolizing genes (CYP27A1, GC, CYP27B1, and CYP24A1) with serum 25(OH)D levels. Four tagSNPS in GC, the major serum 25(OH)D carrier, were associated with 25(OH)D levels (Ahn et al.Carcinogenesis 2009). CYP24A1 encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This mitochondrial protein initiates the degradation of 1,25-dihydroxyvitamin D by hydroxylation of the side chain. In regulating the level of vitamin D, this enzyme plays a role in calcium homeostasis and the vitamin D endocrine system. Of interest, epigenetic silencing of CYP24A1, which is overexpressed in many cancers, in tumour-derived endothelial cells renders the tumour sensitive to the anti-angiogenic effects of 1,25(OH) D. Various molecules can inhibit 24-Ohase. These merit exploration and further development as specific small molecule 24-OHase inhibitors, especially in combination with 1,25(OH)D or other vitamin D analogues. These may maximize intracellular 1,25(OH)D content and exert optimal antiproliferative effects (Deeb 2007; Mantell 2000; Nishimura 1994). Binding of 1,25(OH)D to the vitamin D receptor (VDR) suppresses proliferation and induces differentiation of cancer cells in tumour tissue, suggesting that high levels of vitamin D metabolites may be protective against cancer (Deeb 2007; Reichel 1989). ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01264874
Study type Interventional
Source European Institute of Oncology
Contact
Status Terminated
Phase Phase 3
Start date May 2010
Completion date July 2017

See also
  Status Clinical Trial Phase
Recruiting NCT05094804 - A Study of OR2805, a Monoclonal Antibody Targeting CD163, Alone and in Combination With Anticancer Agents Phase 1/Phase 2
Completed NCT03979872 - Risk Information and Skin-cancer Education for Undergraduate Prevention N/A
Recruiting NCT04986748 - Using QPOP to Predict Treatment for Sarcomas and Melanomas
Enrolling by invitation NCT00068003 - Harvesting Cells for Experimental Cancer Treatments
Recruiting NCT05707286 - Pilot Study to Determine Pro-Inflammatory Cytokine Kinetics During Immune Checkpoint Inhibitor Therapy
Active, not recruiting NCT05470283 - Phase I, Open-Label, Study of Tumor Infiltrating Lymphocytes Engineered With Membrane Bound IL15 Plus Acetazolamide in Adult Patients With Metastatic Melanoma Phase 1
Recruiting NCT05077137 - A Feasibility Study Utilizing Immune Recall to Increase Response to Checkpoint Therapy Phase 1
Active, not recruiting NCT02721459 - XL888 + Vemurafenib + Cobimetinib for Unresectable BRAF Mutated Stage III/IV Melanoma Phase 1
Completed NCT00341939 - Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
Recruiting NCT05839912 - Excision of Lymph Node Trial (EXCILYNT) (Mel69) N/A
Recruiting NCT04971499 - A Study of Dapansutrile Plus Pembrolizumab in Patients With PD-1 Refractory Advanced Melanoma Phase 1/Phase 2
Recruiting NCT05263453 - HL-085+Vemurafenib to Treat Advanced Melanoma Patients With BRAF V600E/K Mutation Phase 2
Active, not recruiting NCT05060432 - Study of EOS-448 With Standard of Care and/or Investigational Therapies in Participants With Advanced Solid Tumors Phase 1/Phase 2
Not yet recruiting NCT06413680 - A First-In Human (FIH) Trial to Find Out if REGN10597 is Safe and How Well it Works for Adult Participants With Advanced Solid Organ Malignancies Phase 1/Phase 2
Completed NCT03348891 - TNF in Melanoma Patients Treated With Immunotherapy N/A
Terminated NCT03399448 - NY-ESO-1-redirected CRISPR (TCRendo and PD1) Edited T Cells (NYCE T Cells) Phase 1
Completed NCT03171064 - Exercise as a Supportive Measure for Patients Undergoing Checkpoint-inhibitor Treatment Phase 2
Not yet recruiting NCT05539118 - Interferon-α1b Combined With Toripalimab and Anlotinib Hydrochloride in Advanced Unresectable Melanoma Phase 1/Phase 2
Recruiting NCT05171374 - pRospective Evaluation of Clinical Outcomes in Patients With metAsTatIс melanOma Treated With dabrafeNib and trAmetinib in reaL practicE
Withdrawn NCT02854488 - Yervoy Pregnancy Surveillance Study