Clinical Trials Logo

Medulloblastoma clinical trials

View clinical trials related to Medulloblastoma.

Filter by:

NCT ID: NCT04860934 Completed - Childhood Cancer Clinical Trials

Dual Task Training On Children With Ataxia After Medulloblastoma Resection

Start date: March 15, 2021
Phase: N/A
Study type: Interventional

Medulloblastoma is a rapidly-growing tumor of the cerebellum, this area controls balance, posture and sophisticated motor functions like finer hand movements, speech, and swallowing. With the goal of, complete resection, major complications during tumor removal are usually caused by damage to the brain stem and injury to the lower cranial nerves.It has been reported that those children present Ataxia after resection. So the purpose of this study is to investigate the effectiveness of using a selected dual-task- training program to improve postural stability in those Children.

NCT ID: NCT04758533 Recruiting - Clinical trials for Diffuse Intrinsic Pontine Glioma

Clinical Trial to Assess the Safety and Efficacy of AloCELYVIR With Newly Diagnosed Diffuse Intrinsic Pontine Glioma (DIPG) in Combination With Radiotherapy or Medulloblastoma in Monotherapy

AloCELYVIR
Start date: April 19, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

The aim of this study is to assess the safety and efficacy of AloCELYVIR, which consist in bone marrow-derived allogenic mesenchymal stem cells infected with an oncolytic Adenovirus, ICOVIR-5. It has recently been proven that this type of cells are able of transporting oncolytic substances to tumor targets that are difficult to reach, such as medulloblastomas and gliomas, youth cancers located in the cranial cavity that have a poor prognosis and a fatal outcome. In addition, to exerting an anti-tumor action, this virus has the ability to stimulate the immune response, making the therapy even more effective. Thus, the diffuse intrinsic pontine glioma and the medulloblastoma in relapse/progression have been chosen to study the potential of this new advanced therapy through a weekly infusion for 8 weeks.

NCT ID: NCT04743661 Active, not recruiting - Clinical trials for Recurrent Medulloblastoma

131I-Omburtamab, in Recurrent Medulloblastoma and Ependymoma

Start date: April 4, 2022
Phase: Phase 2
Study type: Interventional

A Phase 2 study investigating the addition of cRIT 131I-omburtamab to irinotecan, temozolomide, and bevacizumab for patients with recurrent medulloblastoma. A feasibility cohort is included to assess the feasibility of incorporating cRIT 131I-omburtamab for patients with recurrent ependymoma. Direct intraventricular delivery of radiolabeled tumor-specific antibodies may aid in both the detection and treatment of recurrent disease for these highly specific pediatric patients with recurrent tumors.

NCT ID: NCT04730349 Terminated - Neuroblastoma Clinical Trials

A Study of Bempegaldesleukin (BEMPEG: NKTR-214) in Combination With Nivolumab in Children, Adolescents and Young Adults With Recurrent or Treatment-resistant Cancer

PIVOT IO 020
Start date: June 3, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this study is to first, in Part A, assess the safety, tolerability and drug levels of Bempegaldesleukin (BEMPEG) in combination with nivolumab and then, in Part B, to estimate the preliminary efficacy in children, adolescents and young adults with recurrent or treatment-resistant cancer.

NCT ID: NCT04696029 Recruiting - Medulloblastoma Clinical Trials

DFMO as Maintenance Therapy for Molecular High/Very High Risk and Relapsed Medulloblastoma

Start date: March 29, 2021
Phase: Phase 2
Study type: Interventional

Difluoromethylornithine (DFMO) will be used in an open label, multicenter, study as Maintenance Therapy for Molecular High Risk/Very High Risk and Relapsed/Refractory Medulloblastoma.

NCT ID: NCT04661384 Recruiting - Glioblastoma Clinical Trials

Brain Tumor-Specific Immune Cells (IL13Ralpha2-CAR T Cells) for the Treatment of Leptomeningeal Glioblastoma, Ependymoma, or Medulloblastoma

Start date: March 5, 2021
Phase: Phase 1
Study type: Interventional

This phase I trial investigates the side effects of brain tumor-specific immune cells (IL13Ralpha2-CAR T cells) in treating patients with leptomeningeal disease from glioblastoma, ependymoma, or medulloblastoma. Immune cells are part of the immune system and help the body fight infections and other diseases. Immune cells can be engineered to destroy brain tumor cells in the laboratory. IL13Ralpha2-CAR T cells is brain tumor specific and can enter and express its genes in immune cells. Giving IL13Ralpha2-CAR T cells may better recognize and destroy brain tumor cells in patients with leptomeningeal disease from glioblastoma, ependymoma or medulloblastoma.

NCT ID: NCT04541082 Recruiting - Glioblastoma Clinical Trials

Phase I Study of Oral ONC206 in Recurrent and Rare Primary Central Nervous System Neoplasms

Start date: October 26, 2020
Phase: Phase 1
Study type: Interventional

The primary objective of this Phase 1, open-label, dose-escalation, and exploratory study is to evaluate the safety and tolerability profile (establish the maximum-tolerated dose) and evaluate the occurrence of dose-limiting toxicities (DLTs) following single weekly or multiple-day weekly dose regimens of single-agent, oral ONC206 in patients with recurrent, primary central nervous system (CNS) neoplasms.

NCT ID: NCT04528316 Completed - Clinical trials for Medulloblastoma, Childhood

Physical Activity on Postural Stability and Coordination in Children With Posterior Fossa Tumor

Start date: August 6, 2020
Phase: N/A
Study type: Interventional

Medulloblastoma is a rapidly-growing tumor of the cerebellum, this area controls balance, posture and sophisticated motor functions like finer hand movements, speech, and swallowing. It has been reported that those children fall frequently so the purpose of this study is to investigate the effectiveness of balance and coordination training in these Children.

NCT ID: NCT04521946 Withdrawn - Malignant Glioma Clinical Trials

Chemotherapy and Donor Stem Transplant for the Treatment of Patients With High Grade Brain Cancer

Start date: January 14, 2021
Phase: Phase 1
Study type: Interventional

This phase I trial investigates the side effects and effectiveness of chemotherapy followed by a donor (allogeneic) stem cell transplant when given to patients with high grade brain cancer. Chemotherapy drugs, such as fludarabine, thiotepa, etoposide, melphalan, and rabbit anti-thymocyte globulin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a donor stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells.

NCT ID: NCT04501718 Recruiting - Clinical trials for Recurrent Medulloblastoma

Apatinib Combined With Temozolomide and Etoposide Capsules in the Treatment of Recurrent Medulloblastoma in Children

Start date: October 28, 2020
Phase: Phase 2
Study type: Interventional

This study is a prospective single-center clinical study, which aims to observe and evaluate the efficacy and safety of apatinib combined with temozolomide and oral etoposide in the treatment of recurrent medulloblastoma in children.