View clinical trials related to Medulloblastoma Recurrent.
Filter by:SJELIOT is a phase 1 trial that aims to explore the combination of prexasertib with established DNA-damaging agents used in medulloblastoma to evaluate tolerance and pharmacokinetics in recurrent or refractory disease. Additionally, a small expansion cohort will be incorporated into the trial at the combination MTD/RP2D (maximum tolerated dose/recommended phase two dose) to detect a preliminary efficacy signal. Stratum A: Prexasertib and Cyclophosphamide Primary Objectives - To determine the safety and tolerability and estimate the maximum tolerated dose (MTD)/recommended phase 2 dose (RP2D) of combination treatment with prexasertib and cyclophosphamide in participants with recurrent/refractory Group 3 and Group 4 medulloblastoma and recurrent/refractory sonic hedgehog (SHH) medulloblastoma. - To characterize the pharmacokinetics of prexasertib in combination with cyclophosphamide. Secondary Objectives - To estimate the rate and duration of objective response and progression free survival (PFS) associated with prexasertib and cyclophosphamide treatment in this patient population. - To characterize the pharmacokinetics of cyclophosphamide and metabolites. Stratum B: Prexasertib and Gemcitabine Primary Objectives - To determine the safety and tolerability and estimate the MTD/RP2D of combination treatment with prexasertib and gemcitabine in participants with recurrent/refractory Group 3 and Group 4 medulloblastoma. - To characterize the pharmacokinetics of prexasertib in combination with gemcitabine. Secondary Objectives - To estimate the rate and duration of objective response and PFS associated with prexasertib and gemcitabine treatment in this patient population. - To characterize the pharmacokinetics of gemcitabine and gemcitabine triphosphate (only at St. Jude Children's Research Hospital).
This study is a clinical trial to determine the safety of inoculating G207 (an experimental virus therapy) into a recurrent or refractory cerebellar brain tumor. The safety of combining G207 with a single low dose of radiation, designed to enhance virus replication, tumor cell killing, and an anti-tumor immune response, will also be tested. Funding Source- FDA OOPD