View clinical trials related to Mechanical Ventilation.
Filter by:A study to observe the effect of variations in ventilator settings including tidal volume and PEEP on transpulmonary pressure monitored with an esophageal balloon catheter and to correlate intraoperative transpulmonary pressure variations and intraoperative stroke volume variation changes.
Measurements of esophageal pressure (Pes) as surrogate for pleural pressure are routinely performed in selected ICU patients to facilitate lung-protective ventilation and assess breathing effort. Pes is clinically measured via a nasogastric esophageal catheter. Current techniques involve balloon catheters but have some important disadvantages as they could deflate over time and require a very precise positioning and filling volume. A solid-state sensor does not have disadvantages associated with balloon catheters and may therefore be a useful alternative in clinical practice. This method-comparison study in adult mechanically ventilated ICU patients evaluates the accuracy of Pes measured using an esophageal catheter with a solid-state sensor as compared to a balloon catheter as reference standard.
Weaning and extubation are essential steps for the management of critically ill patients when mechanical ventilation (MV) is no longer required. Extubation failure (EF) occurs in approximately 10-30% (1,2) of all patients meeting the readiness criteria and have tolerated a spontaneous breathing trial (SBT). EF is associated with prolonged MV, as well as increased morbidity and mortality (2). Therefore, the early identification of critically ill patients who are likely to experience EF is vital for improved outcomes. EF can result from different factors (respiratory, metabolic, neuromuscular), particularly cardiac factor, and can be caused by the inability of the respiratory muscle pump to tolerate increases in the cardiac and respiratory load (1,3). Respiratory drive represents the intensity of the neural stimulus to breathe. In mechanically ventilated patients, it can be abnormally low (i.e., suppressed or insufficient) or abnormally high (i.e., excessive), and thus result in excessively low or high inspiratory effort, leading to potential injury to the respiratory muscles (i.e., myotrauma) (4,5) or to the lungs. A high incidence of abnormal drive (low or high) may explain the high incidence of diaphragm dysfunction at time of separation from mechanical ventilation (6). Airway occlusion pressure (P0.1) is the drop in airway pressure (Paw) 100 milliseconds after the onset of inspiration during an end-expiratory occlusion of the airway (7). P0.1 measurement is not perceived by the patient and does not influence respiratory pattern. It is, in theory, a reliable measure of respiratory drive because the brevity of the occlusion explains that it is not affected by patient's response to the occlusion and it is independent of respiratory mechanics (8). P0.1 has also been correlated with inspiratory effort (9, 10) and it has been shown that in patients under assisted mechanical ventilation P0.1 might be able to detect potentially excessive inspiratory effort (11). P0.1 is a non-invasive measure and clinically available at bedside since currently nearly all modern ventilators provide a means of measuring it. Originally, a high P0.1 during a spontaneous breathing trial was associated with failure, suggesting that a high respiratory drive could predict weaning failure. However, only a few and old clinical studies investigated the association between P0.1 and extubation failure (EF) and were not conclusive (12,13). We hypothesized that patients with EF would have increased P0.1 values during spontaneous breathing trial (SBT). Therefore, the aims of our study will be to (1) to evaluate the ability of changes in P0.1 (Delta-P0.1) during SBT to predict EF and (2) to assess if Delta-P0.1 is an independent predictor of EF.
A randomized non-inferior trial comparing remimazolam besylate with propofol for short-term sedation during invasive mechanical ventilation in intensive care units
In this study, it was aimed to compare the effects of pressure-controlled volume-guaranteed ventilation (PCV-VG) and volume-controlled ventilation (VCV) on lung dynamics and hemodynamics in patients undergoing vertebral surgery in the prone position.
The study's aim is to ascertain the best approach for providing sedation and pain management for patients who have sustained trauma and are requiring respiratory support from a mechanical ventilator. The common approach to patients who need mechanical ventilation is to provide continuous drips of sedatives and pain medicine and awaken the patient once a day to check the brain functions. Another approach is to provide pain medicine and reserve sedatives for only a short duration when needed. The difference between approaches has not been studied in Trauma patients.
Weaning from mechanical ventilation is a daily challenge in intensive care units, as it can take up to 50% of the total duration of ventilation. The longer the duration of ventilation is, the more there is complication related with it. Even when the spontaneous breathing trial is succeeded, 10 to 20% of extubations are failed and requires re-intubation. There is two different ways to assess if the patient is capable of breathing by its own : T-piece which can be considered as hard to succeed (it can delay extubation for some patients) or pressure support ventilation with no PEEP which can be too easy and lead to an extubation too early. Studies have identified risk factors of weaning induced pulmonary oedema wich is one of the main cause of failed extubation (up to 60%). The purpose of P-WEAN is to evaluate whether a personalized strategy for weaning from mechanical ventilation, including daily search for weaning criteria and individualization of the weaning modality (T-piece or pressure support ventilation with zero PEEP) based on the existence of WIPO risk factors (obesity, COPD, cardiopathy) improves weaning success compared with usual practice.
Dexmedetomidine and ketamine are both suggested for sedation and analgesia in ICU patients with mechanical ventilation. Recent studies suggest that low-dose dexmedetomidine or ketamine/esketamine may improve sleep quality of ICU patients. The purpose of this trial is to observe whether night-time infusion of low-dose dexmedetomidine-esketamine combination can improve sleep structure of patients with mechanical ventilation in the ICU.
The purpose of this clinical trial is to determine whether different types of ventilator settings during surgery change the relationship between the pressures in the lungs and the function of the heart. In this study, patients will be randomly assigned (like flipping a coin) to receive either standard or individualized (research) lung protective ventilator settings. Before surgery, patients will be given an 8-item verbal questionnaire about any respiratory symptoms. After patients are asleep for surgery, an ultrasound probe will be inserted into the esophagus (food pipe) and stomach to examine the heart and lungs and take ultrasound pictures. The ultrasound probe is then removed. Next, a small balloon catheter (a narrow tube smaller in diameter than a pencil lead) will be placed in the esophagus, where it will be used to measure the pressures in the chest and lungs. For patients who are assigned to standard ventilator settings, the ventilator settings and pressures during surgery will be recorded. For patients assigned to individualized (research) ventilator settings, the pressures from the balloon catheter will be used to adjust the ventilator settings every 30 minutes during surgery. A second ultrasound pictures of the heart and lungs will be obtained at the point at which the patient is placed into the Trendelenburg position. At the end of surgery and before the patient is awake, the balloon catheter will be removed, the ultrasound probe will be inserted, a third set of ultrasound pictures of the heart and lungs will be obtained, and the ultrasound probe then removed. Patients will be telephoned 30 days after surgery to ask about their recovery. The 8-item respiratory symptom questionnaire will be repeated at this time.
The goal of this clinical trial is to test the impact of serum phosphorus level optimization on weaning from mechanical ventilation in adult ICU patients in Alexandria University Hospitals. The main questions it aims to answer are: - Does serum phosphorus level optimization affect the duration of mechanical ventilation? - Is serum phosphorus level optimization associated with successful weaning from mechanical ventilation? In critically ill patients, phosphorus supplementation is done using Sodium glycerophosphate pentahydrate solution.