Mechanical Ventilation Complication Clinical Trial
Official title:
Evaluating the Performance of Invasive Ventilation During Specialized Cardiopulmonary Arrest Resuscitation: a Multicentre Observational Study
Describe the ventilation patterns, describe the evolution of ventilation over time and describe the safety data for two strategies of ventilation (volume or pression modes) during specialized cardiopulmonary resuscitation of pre-hospital cardiorespiratory arrest: an observational and multicentre study.
Out-of-hospital cardiac arrest is a real public health issue, whose annual incidence in Europe is 67 to 170 per 110,000 inhabitants, but whose survival remains extremely low, of the order of 4.6 to 8%. Rapid implementation of the survival chain and then specialized resuscitation is therefore essential. The recommendations of the 2020 American Heart Association (AHA) Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care and the 2021 European Rescucitation Council Guidelines recently reaffirmed the quality criteria for cardiopulmonary resuscitation (CPR) basic. Thus, during this CPR, rescuers must perform optimal chest compressions, that is, at a depth of 5 cm without exceeding 6 cm and at a frequency of 100 to 120/min with the minimum interruption time. Decompression must also be of quality. As regards the ventilation of cardiac arrest, areas of uncertainty persist. This can be done using a bag valve mask (BAVU) or a respirator, regardless of the environment. The oxygen inspired fraction (FiO2) should be as high as possible during CPR. In the case of specialized and medicalized CPR, artificial ventilation must be implemented as soon as possible. Once the orotracheal intubation is performed, the clinician must mechanically ventilate the patient at a frequency of 10 breaths per minute without interrupting chest compressions. A ventilation strategy with reduced tidal volume (6-7 mL.kg-1 weight predicted) is preferred, associated with a low positive tele-expiratory pressure (PEEP) of 0 to 5 cmH20. Despite these clear recommendations, a heterogeneity of ventilatory practices is observed. Regarding specialized ventilator ventilation, different ventilatory strategies are available for the clinician, however the scientific literature remains poor on this subject, especially in terms of safety and effectiveness of these strategies. Volume-assisted ventilation (VAC) is the most frequently used ventilatory strategy in the world, with the theoretical advantage of controlling the volume delivered to the patient, without being able to guarantee the pressures. Other alternative modes regulated in pressure exist but have the disadvantage of not guaranteeing volumes and minute ventilation. Each of these strategies (volume or pressure mode) is used in common practice, often with a preference for this or that ventilatory technique depending on the center and the available equipment. The investigators therefore consider it important to accurately assess the ventilatory performance of these two strategies throughout CPR. To do this, the investigators will conduct an observational, multicentre study. This study will aim to describe the ventilation patterns, describe the evolution of ventilation over time and finally to describe the safety data, for these two strategies during specialized cardiopulmonary resuscitation of pre-hospital cardiorespiratory arrest. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05030337 -
Optimising Ventilation in Preterms With Closed-loop Oxygen Control
|
N/A | |
Completed |
NCT05144607 -
Impact of Inspiratory Muscle Pressure Curves on the Ability of Professionals to Identify Patient-ventilator Asynchronies
|
N/A | |
Recruiting |
NCT03697785 -
Weaning Algorithm for Mechanical VEntilation
|
N/A | |
Completed |
NCT05084976 -
Parental Perception of COVID-19 Vaccine in Technology Dependent Patients
|
||
Active, not recruiting |
NCT05886387 -
a Bayesian Analysis of Three Randomised Clinical Trials of Intraoperative Ventilation
|
||
Completed |
NCT04429399 -
Lowering PEEP: Weaning From High PEEP Setting
|
N/A | |
Completed |
NCT02249039 -
Intravenous Clonidine for Sedation in Infants and Children Who Are Mechanically Ventilated - Dosing Finding Study
|
Phase 1 | |
Recruiting |
NCT02071524 -
Evaluation of the Effects of Fluid Therapy on Respiratory Mechanics
|
N/A | |
Completed |
NCT01114022 -
Prevention Inhalation of Bacterial by Using Endotracheal Tube Balloon Polyvinyl Chloride or Polyurethane
|
N/A | |
Completed |
NCT00893763 -
Strategies To Prevent Pneumonia 2 (SToPP2)
|
Phase 2 | |
Terminated |
NCT05056103 -
Automated Secretion Removal in ICU Patients
|
N/A | |
Active, not recruiting |
NCT04558476 -
Efficacy of CONvalescent Plasma in Patients With COVID-19 Treated With Mechanical Ventilation
|
Phase 2 | |
Recruiting |
NCT05295186 -
PAV Trial During SBT Trial
|
||
Active, not recruiting |
NCT05370248 -
The Effect of 6 ml/kg vs 10 ml/kg Tidal Volume on Diaphragm Dysfunction in Critically Mechanically Ventilated Patient
|
N/A | |
Completed |
NCT04589910 -
Measuring Thickness of the Normal Diaphragm in Children Via Ultrasound.
|
N/A | |
Completed |
NCT04818164 -
Prone Position Improves End-Expiratory Lung Volumes in COVID-19 Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04193254 -
LPP , MP and DP:Relation With Mortality and SOFA in Mechanically Ventilated Patients in ER, Ward and ICU
|
||
Completed |
NCT06332768 -
NIV Versus HFO Versus Standard Therapy Immediately After Weaning From Mechanical Ventilation in ARDS Patients
|
N/A | |
Not yet recruiting |
NCT03259854 -
Non Invasive Mechanical Ventilation VERSUS Oxygen MASK
|
N/A | |
Not yet recruiting |
NCT03245684 -
Assisted or Controlled Ventilation in Ards (Ascovent)
|
N/A |