Mechanical Ventilation Complication Clinical Trial
Official title:
Effects on Respiratory Mechanics of Two Different Ventilation Strategies During Robotic-Gynecological Surgery
This Randomized controlled clinical study, entitled "Effects on Respiratory mechanics of two different ventilation strategies during Robotic- Gynecological surgery", is an original paper. The study was performed in Rome, Italy, from September 2014 to September 2015. Nowadays several studies evaluated the effects of "open lung strategy" and the positive effect of Recruitment Maneuvers and Positive End Expiratory Pressure (PEEP) application during general anesthesia, especially during open abdominal surgery and in elderly patients. This is the first study aimed at evaluating two different ventilation strategies in healthy respiratory women undergoing Robotic surgery. In particular, the investigators evaluated the effects of protective ventilation strategy on respiratory mechanics, gas exchange and post-operative respiratory complications compared to standard ventilation.
The ventilation protocol consisted in volume-controlled mechanical ventilation through Ventilator, inspiratory to expiratory ratio of 1:2, and a respiratory rate adjusted to normocapnia (end-tidal carbon dioxide partial pressure between 30 and 40 mmHg). The were randomly assigned to Standard (SV) or Protective (PV) group. participants in the SV group received a Tidal Volume (Vt) of 10 ml/kg of Ideal Body Weight (IBW) and a PEEP of 5 cmH2O, the participants in the PV group a Vt of 6 ml/kg of IBW and a PEEP of 8-10 cmH2O, associated to recruitment maneuvers (RMs). RMs were performed only in hemodynamic stable conditions and at pre-set moments: after the induction of anesthesia, after any disconnection from the mechanical ventilator, each hour during the surgical procedures and immediately before extubation. RMs were performed in Pressure Control mode as follows: the limit of peak inspiratory pressure was set at 45 cmH2O and the pressure control was set at 30 cmH2O, therefore three consecutive thirty seconds lasting inspiratory pauses were performed. At the end of RMs, respiratory rate, inspiratory to expiratory ratio, inspiratory pause, and Vt were set back at values preceding the RMs. Air Flow (V') was measured with a heated pneumotachograph, inserted between the Y-piece of the ventilator circuit and the endotracheal tube. The pneumotachograph was linear over the experimental range of flow. Volume was obtained by numerical integration of the flow signal. Airway pressure (Paw) was measured proximal to the endotracheal tube with a pressure transducer with a differential pressure of ± 100 cm H2O. The end-inspiratory and end-expiratory occlusions were performed through specific maneuver of ventilator. Following end-inspiratory occlusion there is an immediate drop of the airway pressure from a maximal value (Pmax) to airway pressure at zero flow (P1), followed by a further decrease to plateau pressure (P2). The plateau pressure usually arrived within 3 seconds. Therefore, airway pressure 3 seconds after occlusion was taken as the static end-inspiratory elastic recoil pressure (P2) of the respiratory system. The use of the interrupter method for the measurement of respiratory mechanics allows possible quantification of the airway and viscoelastic properties of the respiratory system. The difference between Pmax and P1 divided by flow provides major information about minimal airway resistance (Rmin), while the difference between P1 and P2 (ΔP) divided by flow stands for viscoelastic resistance or Pendelluft effect of the respiratory system (ΔR). Maximal respiratory resistance (Rmax) is the sum of Rmin and ΔR. The inspiratory volume divided by P2- Total PEEP yields respiratory system compliance. Mechanical respiratory measurements and arterial blood gases were performed immediately after intubation, after pneumoperitoneum (AP), every hour during the procedure and before extubation (Ext). A further arterial blood gas sample was analyzed 1 hour after extubation. The day after the surgical procedure, clinical patient examination and chest x ray were performed, in order to detect eventual pulmonary adverse events. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05030337 -
Optimising Ventilation in Preterms With Closed-loop Oxygen Control
|
N/A | |
Completed |
NCT05144607 -
Impact of Inspiratory Muscle Pressure Curves on the Ability of Professionals to Identify Patient-ventilator Asynchronies
|
N/A | |
Recruiting |
NCT03697785 -
Weaning Algorithm for Mechanical VEntilation
|
N/A | |
Completed |
NCT05084976 -
Parental Perception of COVID-19 Vaccine in Technology Dependent Patients
|
||
Active, not recruiting |
NCT05886387 -
a Bayesian Analysis of Three Randomised Clinical Trials of Intraoperative Ventilation
|
||
Completed |
NCT04429399 -
Lowering PEEP: Weaning From High PEEP Setting
|
N/A | |
Completed |
NCT02249039 -
Intravenous Clonidine for Sedation in Infants and Children Who Are Mechanically Ventilated - Dosing Finding Study
|
Phase 1 | |
Recruiting |
NCT02071524 -
Evaluation of the Effects of Fluid Therapy on Respiratory Mechanics
|
N/A | |
Completed |
NCT01114022 -
Prevention Inhalation of Bacterial by Using Endotracheal Tube Balloon Polyvinyl Chloride or Polyurethane
|
N/A | |
Completed |
NCT00893763 -
Strategies To Prevent Pneumonia 2 (SToPP2)
|
Phase 2 | |
Terminated |
NCT05056103 -
Automated Secretion Removal in ICU Patients
|
N/A | |
Active, not recruiting |
NCT04558476 -
Efficacy of CONvalescent Plasma in Patients With COVID-19 Treated With Mechanical Ventilation
|
Phase 2 | |
Recruiting |
NCT05295186 -
PAV Trial During SBT Trial
|
||
Active, not recruiting |
NCT05370248 -
The Effect of 6 ml/kg vs 10 ml/kg Tidal Volume on Diaphragm Dysfunction in Critically Mechanically Ventilated Patient
|
N/A | |
Completed |
NCT04589910 -
Measuring Thickness of the Normal Diaphragm in Children Via Ultrasound.
|
N/A | |
Completed |
NCT04818164 -
Prone Position Improves End-Expiratory Lung Volumes in COVID-19 Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04193254 -
LPP , MP and DP:Relation With Mortality and SOFA in Mechanically Ventilated Patients in ER, Ward and ICU
|
||
Completed |
NCT06332768 -
NIV Versus HFO Versus Standard Therapy Immediately After Weaning From Mechanical Ventilation in ARDS Patients
|
N/A | |
Not yet recruiting |
NCT03245684 -
Assisted or Controlled Ventilation in Ards (Ascovent)
|
N/A | |
Not yet recruiting |
NCT03259854 -
Non Invasive Mechanical Ventilation VERSUS Oxygen MASK
|
N/A |