View clinical trials related to Lysosomal Storage Disease.
Filter by:This study is designed to test the ability to achieve donor hematopoietic engraftment while maintaining low rates of transplant-related mortality (TRM) in patients with high-risk lysosomal and peroxisomal disorders using a novel conditioning regimen for hematopoietic cell transplantation (HCT). After a reduced-intensity conditioning regimen using volumetric-modulated arc therapy (VMAT)-delivered low-dose total body irradiation (TBI) with highly conformal marrow boosting, patients will be transplanted using either a related or unrelated allograft. The cell source may be marrow, peripheral blood or cord blood based on donor availability.
This is a 24-month study of the use of laronidase administered into the spinal fluid to treat cognitive decline in mucopolysaccharidosis I (MPS I). MPS I is a rare genetic condition due to deficiency of the enzyme alpha-l-iduronidase. Laronidase is the manufactured form of the enzyme alpha-l-iduronidase. MPS I is a heterogeneous disease with several clinical phenotypes ranging from the most severe, Hurler syndrome, to the attenuated forms, Hurler-Scheie and Scheie. Although patients with milder forms of MPS I may not have grossly observable problems with cognition, these patients do have learning difficulties that are apparent in school and with neuropsychological testing. The goal of this study is to evaluate whether intrathecal recombinant human alpha-l-iduronidase (rhIDU) injections can stabilize or improve cognitive decline in individuals with MPS I.
The primary objective is to determine the feasibility of attaining acceptable rates of donor cell engraftment (>25% donor chimerism at 180 days) following reduced intensity conditioning (RIC) regimens in pediatric patients < 21 years receiving cord blood transplantation for non-malignant disorders.
Transcranial Magnetic Stimulation (TMS) is a non-invasive technique to gather information about brain function. It is very useful when studying the areas of the brain related to motor activity (motor cortex, corticospinal tract, spinal cord and nerve roots). The procedure is conducted by transmitting a magnetic signal into the brain to stimulate an area of the body. Electrodes (small pieces of metal taped to areas of the body) are used in order to measure electrical activity. A magnetic signal is sent from a metal instrument held close to the patient's head, to an area of the brain responsible for motor activity of a certain area of the body. The electrodes pick up and record the electrical activity in the muscles. This study will employ the use of TMS to diagnose neurological disorders that affect the motor cortex or the corticospinal tract. Normal subjects are sometimes studied to investigate normal activity of the nervous system and to train doctors in clinical neurophysiology and electrodiagnostic medicine at the National Institutes of Health (NIH).
Leukodystrophy is a disease of the white matter of the brain. White matter is the portion of the brain responsible for conducting electrical impulses from one area of the brain to the other. Insulating cells called myelin cover the brain and nerve cells in the white matter. If myelin becomes damaged electrical information cannot be transferred properly. Many patients suffering from leukodystrophies do not fit the description of any of the defined types of leukodystrophies and are therefore considered to have a leukodystrophy of unknown cause. The purpose of this study is to define groups of patients with leukodystrophies and to work toward finding the cause of the disorders. In order to do this, researchers will analyze patients with leukodystrophies of unknown causes. Patients will undergo clinical, neurophysiologic, biochemical, and genetic examinations and tests. Researchers believe that by studying these patients and their disorders they will be able to better understand the causes of myelin destruction, and eventually lead to effective treatments for these disorders.