Lymphoma Clinical Trial
Official title:
SUper-Resolution Ultrasound Imaging of Erythrocytes (SURE) in Normal and Malignant Lymph Nodes
NCT number | NCT05754814 |
Other study ID # | SURE-LN-2022 |
Secondary ID | |
Status | Recruiting |
Phase | |
First received | |
Last updated | |
Start date | June 28, 2022 |
Est. completion date | December 2024 |
The goal of this observational study is to visualize the small vessels in normal and cancerous lymph nodes on the neck with a new ultrasound technique. The main questions it aims to answer are: - Is it possible to visualize the network of the smallest vessels in lymph nodes on the neck? - Is it possible to distinguish between healthy and cancerous lymph nodes using different parameters? The participants will have 1-2 lymph nodes ultrasound scanned with a standard ultrasound technique and the new technique.
Status | Recruiting |
Enrollment | 100 |
Est. completion date | December 2024 |
Est. primary completion date | December 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 70 Years |
Eligibility | Inclusion Criteria: - Participants must be 18 to 70 years of age, at the time of signing the informed consent - Participants who can lie still for 1 minute - Capable of giving signed informed consent Inclusion criteria for healthy participants: - Participants who are overtly healthy as determined by medical history - Participants who have a superficial lymph node laterally on the neck with a normal appearance on standard B-mode ultrasound available for SURE imaging Inclusion criteria for participants with head and neck cancer or lymphoma: - Participants who, besides their untreated head and neck cancer or lymphoma, are overtly healthy as determined by medical evaluation and medical history - Participants with untreated lymphoma or head and neck cancer and lymph node metastasis verified by a biopsy. - Participants who have superficial lymph nodes laterally on the neck up to 2.5 cm (so the entire lymph node is in the SURE image) - Participants who will have their lymph nodes surgically removed Exclusion Criteria: - Pregnancy - Dementia - Physique making ultrasound scanning difficult - Ongoing or recent (within the last 4 weeks) infectious disease (bacterial, viral, fungal, or protozoal) which may give rise to reactive lymph nodes - Diseases that cause lymphadenopathy: Some chronic infectious diseases (HIV, Tuberculosis, Hepatitis B), Systemic diseases (rheumatoid arthritis, systemic lupus erythematosus, sarcoidosis, other rare systemic diseases*), Primary adrenal insufficiency (Addison´s disease), Leukemia, Lymphoma or other cancers (besides the type of cancer the participant is being examined for at the Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Rigshospitalet) - Drugs that cause lymphadenopathy: Antibiotics (Cephalosporins, Penicillin, Sulfonamides), Antiepileptics (Carbamazepine, Ethosuximide, Lamotrigine, Phenytoin, Primidone), Antihypertensives (Atenolol, Captopril, Hydralazine), Other (Allopurinol, Imatinib) - Castleman's disease, Kikuchi's disease, Kawasaki disease, Inflammatory pseudotumor, Amyloidosis, Kimura disease, Rosai-Dorfman disease, IgG4-related disease, Still's disease, dermatomyositis, Churg-Strauss, histiocytosis, chronic granulomatous diseases, Autoimmune lymphoproliferative syndrome, lipid storage diseases. |
Country | Name | City | State |
---|---|---|---|
Denmark | Rigshospitalet | Copenhagen | Capital Region |
Denmark | Technical University of Denmark | Lyngby | Capital Region |
Lead Sponsor | Collaborator |
---|---|
Rigshospitalet, Denmark | Technical University of Denmark, University of Copenhagen |
Denmark,
Abdeyrim A, He S, Zhang Y, Mamtali G, Asla A, Yusup M, Liu J. Prognostic value of lymph node ratio in laryngeal and hypopharyngeal squamous cell carcinoma: a systematic review and meta-analysis. J Otolaryngol Head Neck Surg. 2020 May 29;49(1):31. doi: 10.1186/s40463-020-00421-w. — View Citation
Ahuja AT, Ying M, Ho SS, Metreweli C. Distribution of intranodal vessels in differentiating benign from metastatic neck nodes. Clin Radiol. 2001 Mar;56(3):197-201. doi: 10.1053/crad.2000.0574. — View Citation
Andersen SB, Taghavi I, Hoyos CAV, Sogaard SB, Gran F, Lonn L, Hansen KL, Jensen JA, Nielsen MB, Sorensen CM. Super-Resolution Imaging with Ultrasound for Visualization of the Renal Microvasculature in Rats Before and After Renal Ischemia: A Pilot Study. Diagnostics (Basel). 2020 Oct 22;10(11):862. doi: 10.3390/diagnostics10110862. — View Citation
Aykan NF, Ozatli T. Objective response rate assessment in oncology: Current situation and future expectations. World J Clin Oncol. 2020 Feb 24;11(2):53-73. doi: 10.5306/wjco.v11.i2.53. — View Citation
Basile DP, Donohoe D, Roethe K, Osborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol. 2001 Nov;281(5):F887-99. doi: 10.1152/ajprenal.2001.281.5.F887. — View Citation
Beckman JA, Duncan MS, Damrauer SM, Wells QS, Barnett JV, Wasserman DH, Bedimo RJ, Butt AA, Marconi VC, Sico JJ, Tindle HA, Bonaca MP, Aday AW, Freiberg MS. Microvascular Disease, Peripheral Artery Disease, and Amputation. Circulation. 2019 Aug 6;140(6):449-458. doi: 10.1161/CIRCULATIONAHA.119.040672. Epub 2019 Jul 8. — View Citation
Brown M, Assen FP, Leithner A, Abe J, Schachner H, Asfour G, Bago-Horvath Z, Stein JV, Uhrin P, Sixt M, Kerjaschki D. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science. 2018 Mar 23;359(6382):1408-1411. doi: 10.1126/science.aal3662. — View Citation
Chen Q, Yu J, Rush BM, Stocker SD, Tan RJ, Kim K. Ultrasound super-resolution imaging provides a noninvasive assessment of renal microvasculature changes during mouse acute kidney injury. Kidney Int. 2020 Aug;98(2):355-365. doi: 10.1016/j.kint.2020.02.011. Epub 2020 Mar 3. — View Citation
Christensen-Jeffries K, Browning RJ, Tang MX, Dunsby C, Eckersley RJ. In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles. IEEE Trans Med Imaging. 2015 Feb;34(2):433-40. doi: 10.1109/TMI.2014.2359650. Epub 2014 Sep 23. — View Citation
Christensen-Jeffries K, Couture O, Dayton PA, Eldar YC, Hynynen K, Kiessling F, O'Reilly M, Pinton GF, Schmitz G, Tang MX, Tanter M, van Sloun RJG. Super-resolution Ultrasound Imaging. Ultrasound Med Biol. 2020 Apr;46(4):865-891. doi: 10.1016/j.ultrasmedbio.2019.11.013. Epub 2020 Jan 21. — View Citation
Corliss BA, Mathews C, Doty R, Rohde G, Peirce SM. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation. 2019 Jul;26(5):e12520. doi: 10.1111/micc.12520. Epub 2019 Jan 17. — View Citation
Demene C, Robin J, Dizeux A, Heiles B, Pernot M, Tanter M, Perren F. Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients. Nat Biomed Eng. 2021 Mar;5(3):219-228. doi: 10.1038/s41551-021-00697-x. Epub 2021 Mar 15. — View Citation
Demidov V, Maeda A, Sugita M, Madge V, Sadanand S, Flueraru C, Vitkin IA. Preclinical longitudinal imaging of tumor microvascular radiobiological response with functional optical coherence tomography. Sci Rep. 2018 Jan 8;8(1):38. doi: 10.1038/s41598-017-18635-w. — View Citation
Dencks S, Piepenbrock M, Opacic T, Krauspe B, Stickeler E, Kiessling F, Schmitz G. Clinical Pilot Application of Super-Resolution US Imaging in Breast Cancer. IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Mar;66(3):517-526. doi: 10.1109/TUFFC.2018.2872067. Epub 2018 Sep 24. — View Citation
Ehling J, Babickova J, Gremse F, Klinkhammer BM, Baetke S, Knuechel R, Kiessling F, Floege J, Lammers T, Boor P. Quantitative Micro-Computed Tomography Imaging of Vascular Dysfunction in Progressive Kidney Diseases. J Am Soc Nephrol. 2016 Feb;27(2):520-32. doi: 10.1681/ASN.2015020204. Epub 2015 Jul 20. — View Citation
Ehling J, Theek B, Gremse F, Baetke S, Mockel D, Maynard J, Ricketts SA, Grull H, Neeman M, Knuechel R, Lederle W, Kiessling F, Lammers T. Micro-CT imaging of tumor angiogenesis: quantitative measures describing micromorphology and vascularization. Am J Pathol. 2014 Feb;184(2):431-41. doi: 10.1016/j.ajpath.2013.10.014. Epub 2013 Nov 18. — View Citation
Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015 Nov 26;527(7579):499-502. doi: 10.1038/nature16066. — View Citation
Eshraghi Samani R, Shirkhoda M, Hadji M, Beheshtifard F, Hamedani SMMG, Momen A, Mollashahi M, Zendehdel K. The prognostic value of lymph node ratio in survival of head-and-neck squamous cell carcinoma. J Res Med Sci. 2018 Apr 26;23:35. doi: 10.4103/jrms.JRMS_948_17. eCollection 2018. — View Citation
Foiret J, Zhang H, Ilovitsh T, Mahakian L, Tam S, Ferrara KW. Ultrasound localization microscopy to image and assess microvasculature in a rat kidney. Sci Rep. 2017 Oct 20;7(1):13662. doi: 10.1038/s41598-017-13676-7. — View Citation
Harput S, Christensen-Jeffries K, Brown J, Li Y, Williams KJ, Davies AH, Eckersley RJ, Dunsby C, Tang MX, Christensen-Jeffries K, Li Y, Williams KJ, Eckersley RJ, Harput S, Dunsby C, Davies AH, Brown J, Tang MX. Two-Stage Motion Correction for Super-Resolution Ultrasound Imaging in Human Lower Limb. IEEE Trans Ultrason Ferroelectr Freq Control. 2018 May;65(5):803-814. doi: 10.1109/TUFFC.2018.2824846. — View Citation
Huang C, Zhang W, Gong P, Lok UW, Tang S, Yin T, Zhang X, Zhu L, Sang M, Song P, Zheng R, Chen S. Super-resolution ultrasound localization microscopy based on a high frame-rate clinical ultrasound scanner: an in-human feasibility study. Phys Med Biol. 2021 Apr 8;66(8):10.1088/1361-6560/abef45. doi: 10.1088/1361-6560/abef45. — View Citation
Jafarnejad M, Ismail AZ, Duarte D, Vyas C, Ghahramani A, Zawieja DC, Lo Celso C, Poologasundarampillai G, Moore JE Jr. Quantification of the Whole Lymph Node Vasculature Based on Tomography of the Vessel Corrosion Casts. Sci Rep. 2019 Sep 16;9(1):13380. doi: 10.1038/s41598-019-49055-7. — View Citation
Jeong HS, Jones D, Liao S, Wattson DA, Cui CH, Duda DG, Willett CG, Jain RK, Padera TP. Investigation of the Lack of Angiogenesis in the Formation of Lymph Node Metastases. J Natl Cancer Inst. 2015 Jun 10;107(9):djv155. doi: 10.1093/jnci/djv155. Print 2015 Sep. — View Citation
Jonasson H, Bergstrand S, Fredriksson I, Larsson M, Ostgren CJ, Stromberg T. Normative data and the influence of age and sex on microcirculatory function in a middle-aged cohort: results from the SCAPIS study. Am J Physiol Heart Circ Physiol. 2020 Apr 1;318(4):H908-H915. doi: 10.1152/ajpheart.00668.2019. Epub 2020 Mar 6. — View Citation
Kierski TM, Espindola D, Newsome IG, Cherin E, Yin J, Foster FS, Demore CEM, Pinton GF, Dayton PA. Superharmonic Ultrasound for Motion-Independent Localization Microscopy: Applications to Microvascular Imaging From Low to High Flow Rates. IEEE Trans Ultrason Ferroelectr Freq Control. 2020 May;67(5):957-967. doi: 10.1109/TUFFC.2020.2965767. Epub 2020 Jan 10. — View Citation
Kim E, Park JS, Son KR, Kim JH, Jeon SJ, Na DG. Preoperative diagnosis of cervical metastatic lymph nodes in papillary thyroid carcinoma: comparison of ultrasound, computed tomography, and combined ultrasound with computed tomography. Thyroid. 2008 Apr;18(4):411-8. doi: 10.1089/thy.2007.0269. — View Citation
Kupferman ME, Patterson DM, Mandel SJ, LiVolsi V, Weber RS. Safety of modified radical neck dissection for differentiated thyroid carcinoma. Laryngoscope. 2004 Mar;114(3):403-6. doi: 10.1097/00005537-200403000-00002. — View Citation
Lee S, Lee JY, Yoon RG, Kim JH, Hong HS. The Value of Microvascular Imaging for Triaging Indeterminate Cervical Lymph Nodes in Patients with Papillary Thyroid Carcinoma. Cancers (Basel). 2020 Oct 1;12(10):2839. doi: 10.3390/cancers12102839. — View Citation
Lin F, Shelton SE, Espindola D, Rojas JD, Pinton G, Dayton PA. 3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound. Theranostics. 2017 Jan 1;7(1):196-204. doi: 10.7150/thno.16899. eCollection 2017. — View Citation
Lowerison M, Zhang W, Chen X, Fan T, Song P. Characterization of Anti-Angiogenic Chemo-Sensitization via Longitudinal Ultrasound Localization Microscopy in Colorectal Carcinoma Tumor Xenografts. IEEE Trans Biomed Eng. 2022 Apr;69(4):1449-1460. doi: 10.1109/TBME.2021.3119280. Epub 2022 Mar 18. — View Citation
Lowerison MR, Huang C, Lucien F, Chen S, Song P. Ultrasound localization microscopy of renal tumor xenografts in chicken embryo is correlated to hypoxia. Sci Rep. 2020 Feb 12;10(1):2478. doi: 10.1038/s41598-020-59338-z. — View Citation
Maric-Bilkan C, Flynn ER, Chade AR. Microvascular disease precedes the decline in renal function in the streptozotocin-induced diabetic rat. Am J Physiol Renal Physiol. 2012 Feb 1;302(3):F308-15. doi: 10.1152/ajprenal.00421.2011. Epub 2011 Oct 26. — View Citation
Opacic T, Dencks S, Theek B, Piepenbrock M, Ackermann D, Rix A, Lammers T, Stickeler E, Delorme S, Schmitz G, Kiessling F. Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization. Nat Commun. 2018 Apr 18;9(1):1527. doi: 10.1038/s41467-018-03973-8. — View Citation
Pereira ER, Kedrin D, Seano G, Gautier O, Meijer EFJ, Jones D, Chin SM, Kitahara S, Bouta EM, Chang J, Beech E, Jeong HS, Carroll MC, Taghian AG, Padera TP. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018 Mar 23;359(6382):1403-1407. doi: 10.1126/science.aal3622. Epub 2018 Mar 22. — View Citation
Yu J, Lavery L, Kim K. Super-resolution ultrasound imaging method for microvasculature in vivo with a high temporal accuracy. Sci Rep. 2018 Sep 17;8(1):13918. doi: 10.1038/s41598-018-32235-2. — View Citation
Zhu AQ, Li XL, An LW, Guo LH, Fu HJ, Sun LP, Xu HX. Predicting Axillary Lymph Node Metastasis in Patients With Breast Invasive Ductal Carcinoma With Negative Axillary Ultrasound Results Using Conventional Ultrasound and Contrast-Enhanced Ultrasound. J Ultrasound Med. 2020 Oct;39(10):2059-2070. doi: 10.1002/jum.15314. Epub 2020 May 5. — View Citation
* Note: There are 36 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Super-resolution ultrasound image of normal and malignant human lymph nodes | With super-resolution ultrasound imaging, the investigators will visualize the microvasculature in the lymph nodes. | 1 minute | |
Secondary | Vessel distribution | Visual distribution of the nodal microvasculature | 1 minute | |
Secondary | Microvessel density | The ratio of the vessel volume to the full volume in different regions | 1 minute | |
Secondary | Distance between vessels | The distance between vessels in different areas in microns | 1 minute | |
Secondary | Size of avascular areas | In mm2 | 1 minute | |
Secondary | Degree of tortuosity | Tortuosity index. The actual track path divided by the shortest linear distance from the start to the end of the track | 1 minute | |
Secondary | Volume flow | In mm3/s | 1 minute | |
Secondary | Flow velocity | In mm/s | 1 minute |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05540340 -
A Study of Melphalan in People With Lymphoma Getting an Autologous Hematopoietic Cell Transplant
|
Phase 1 | |
Completed |
NCT01947140 -
Pralatrexate + Romidepsin in Relapsed/Refractory Lymphoid Malignancies
|
Phase 1/Phase 2 | |
Completed |
NCT00001512 -
Active Specific Immunotherapy for Follicular Lymphomas With Tumor-Derived Immunoglobulin Idiotype Antigen Vaccines
|
Phase 1 | |
Recruiting |
NCT05618041 -
The Safety and Efficay Investigation of CAR-T Cell Therapy for Patients With Hematological Malignancies
|
N/A | |
Completed |
NCT01410630 -
FLT-PET/CT vs FDG-PET/CT for Therapy Monitoring of Diffuse Large B-cell Lymphoma
|
||
Active, not recruiting |
NCT04270266 -
Mind-Body Medicine for the Improvement of Quality of Life in Adolescents and Young Adults Coping With Lymphoma
|
N/A | |
Terminated |
NCT00801931 -
Double Cord Blood Transplant for Patients With Malignant and Non-malignant Disorders
|
Phase 1/Phase 2 | |
Completed |
NCT01949883 -
A Phase 1 Study Evaluating CPI-0610 in Patients With Progressive Lymphoma
|
Phase 1 | |
Completed |
NCT01682226 -
Cord Blood With T-Cell Depleted Haplo-identical Peripheral Blood Stem Cell Transplantation for Hematological Malignancies
|
Phase 2 | |
Completed |
NCT00003270 -
Chemotherapy, Radiation Therapy, and Umbilical Cord Blood Transplantation in Treating Patients With Hematologic Cancer
|
Phase 2 | |
Recruiting |
NCT05019976 -
Radiation Dose Study for Relapsed/Refractory Hodgkin/Non-Hodgkin Lymphoma
|
N/A | |
Recruiting |
NCT04904588 -
HLA-Mismatched Unrelated Donor Hematopoietic Cell Transplantation With Post-Transplantation Cyclophosphamide
|
Phase 2 | |
Completed |
NCT04434937 -
Open-Label Study of Parsaclisib, in Japanese Participants With Relapsed or Refractory Follicular Lymphoma (CITADEL-213)
|
Phase 2 | |
Completed |
NCT01855750 -
A Study of the Bruton's Tyrosine Kinase Inhibitor, PCI-32765 (Ibrutinib), in Combination With Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Patients With Newly Diagnosed Non-Germinal Center B-Cell Subtype of Diffuse Large B-Cell Lymphoma
|
Phase 3 | |
Terminated |
NCT00788125 -
Dasatinib, Ifosfamide, Carboplatin, and Etoposide in Treating Young Patients With Metastatic or Recurrent Malignant Solid Tumors
|
Phase 1/Phase 2 | |
Terminated |
NCT00775268 -
18F- Fluorothymidine to Evaluate Treatment Response in Lymphoma
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT04188678 -
Resiliency in Older Adults Undergoing Bone Marrow Transplant
|
N/A | |
Terminated |
NCT00014560 -
Antibody Therapy in Treating Patients With Refractory or Relapsed Non-Hodgkin's Lymphoma or Chronic Lymphocytic Leukemia
|
Phase 1 | |
Recruiting |
NCT04977024 -
SARS-CoV-2 Vaccine (GEO-CM04S1) Versus mRNA SARS-COV-2 Vaccine in Patients With Blood Cancer
|
Phase 2 | |
Active, not recruiting |
NCT03936465 -
Study of the Bromodomain (BRD) and Extra-Terminal Domain (BET) Inhibitors BMS-986158 and BMS-986378 in Pediatric Cancer
|
Phase 1 |