Clinical Trials Logo

Lung Inflammation clinical trials

View clinical trials related to Lung Inflammation.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT05854563 Recruiting - Lung Cancer Clinical Trials

Cough Capture as a Portal Into the Lung

CC1
Start date: March 28, 2023
Phase:
Study type: Observational

Background: The lung is a privileged organ; blood does not reflect most lung processes well, if at all. Therefore, for population scale diagnostics, the investigator team is developing non-invasive portals to the lung, for eventual early detection/risk assessment and diagnostic purposes. However, large macromolecules are not likely suspended nor readily detected in the breath. In particular, genomic DNA in the breath condensate (EBC) is very sparse, and where present, generally highly fragmented, not readily amenable to sequencing based assessments of DNA somatic mutation burden or distribution. Because gDNA (and protein) is challenging to obtain non-invasively from EBC, the study team considered alternative surrogate lower airway specimens. Cough capture is rarely done, and the investigator team is in the process of optimizing its collection. Importantly, the team will be evaluating how much of coughed material is from saliva contamination. Additionally, analyzing material that is target captured by capturing deep lung extracellular vesicles (EVs) using immobilized CCSP/SFTPC antibodies targeting EVs from distal bronchiole Club and alveolar type 2 cells could circumvent the mouth contamination problem, leaving a non-invasive portal to the deep lung suitable for large molecules, and in turn suitable for myriad epidemiologic and clinical applications. Proposal: The investigator team proposes (Aim 1) to pursue optimizing cough collection, and testing the efficacy and practicality of partitioning cough specimen for deep-lung specific extra-cellular vesicles (EVs). This cough specimen will be compared to that from invasively collected deep lung samples BAL/bronchial brushings, and to the potential contaminating mouthrinse, all from the same individuals. (Aim 2) The study team initially proposes to examine these cough specimens for somatic mutations by SMM bulk sequencing for single nucleotide variation, developed in the Vijg/Maslov labs. Finally, the investigator team will (Aim 3) test all airway specimens (cough, mouthwash and BAL) for lung surrogacy of cough, using proteins known to be specific for lung, as opposed to oral cavity/saliva, in the Sidoli/proteomics core. Impact: The investigator team envisions that the translational impact of non-invasively obtained DNA or protein markers could allow for more rapid acute clinical diagnoses, and facilitate precision prevention and/or early detection of many acute and chronic respiratory disorders, including lung cancer, asthma and COPD, acute and chronic infectious diseases, and indeed systemic disorders of inflammation and metabolism.

NCT ID: NCT04755478 Recruiting - Lung Cancer Clinical Trials

LUS to Assess Lung Injury After Lung Lobectomy

OPEN THORUS
Start date: January 28, 2021
Phase:
Study type: Observational

The purpose of the study is to assess whether lung ultrasound is able to detect lung injury after lung resection surgery.

NCT ID: NCT04677309 Recruiting - Lung Cancer Clinical Trials

LUS to Assess Lung Injury After Lung Resection

THORUS
Start date: December 20, 2020
Phase:
Study type: Observational

The purpose of the study is to assess whether lung ultrasound is able to detect lung injury after lung resection surgery.

NCT ID: NCT04115514 Recruiting - ARDS, Human Clinical Trials

Treatment of ARDS With Instilled T3

ARDS+T3
Start date: October 21, 2019
Phase: Phase 2
Study type: Interventional

It is hypothesized that instillation of Liothyronine Sodium (T3) into the airspace will be safe, well tolerated, and will increase alveolar fluid clearance and decrease inflammation in patients with ARDS, reflected in improved oxygenation index (OI) and oxygenation saturation index (OSI).

NCT ID: NCT03492762 Recruiting - Lung Inflammation Clinical Trials

PET Imaging CCR2 in Lung Inflammation

Start date: February 27, 2018
Phase: Early Phase 1
Study type: Interventional

The primary objective of this study is to assess the lung distribution of the Positron Emission Tomography (PET) imaging radiotracer Cu-DOTA-ECL1i, which binds to the specific population inflammatory cells, in patients with fibrotic lung diseases. This objective includes sub-studies to assess radiotracer distribution in the lung, the reproducibility of PET scans and the relationship of the scan to distribution of inflammatory cells in human lung tissue. The overall goal is to assess the potential of the radiotracer to track inflammatory cells in lung diseases.

NCT ID: NCT03312712 Recruiting - Sarcoidosis Clinical Trials

Validation of the Analysis Methodology Behind the Use of Quantitative 18F-FDG PET/CT to Assess Lung Inflammation

VERIFY
Start date: January 23, 2018
Phase:
Study type: Observational

The purpose of this study is to validate the method of analysing Positron Emission Tomography (PET) images to assess lung inflammation. Development of novel therapeutic drugs requires a biomarker which is sensitive to the underlying disease and can respond to therapeutic interventions. PET is a potential imaging biomarker which can target molecular and cellular processes. There is currently no standardised method of analysing PET lung data and a lack of validation for the existing techniques. This study is divided in to two parts. Part A aims to determine the best method to perform 18F-FDG PET/CT lung analysis and how it correlates with cell counts from bronchoalveolar lavage (BAL) samples taken from participants with active pulmonary sarcoidosis. Part B will compare imaging data from healthy volunteers who have either undergone a Lipopolysaccharide (LPS) challenge (whereby the lung is temporarily inflamed) or saline equivalent to determine whether lung inflammation can be detected by 18F-FDG PET/CT. No medications will be given and patients will not be asked to stop or change existing medication.