Long QT Syndrome Clinical Trial
Official title:
Prevalence of Congenital Long QT Syndrome and Acquired QT Prolongation in a Hospital Cohort
NCT number | NCT03544918 |
Other study ID # | REK 2013/1090 |
Secondary ID | |
Status | Completed |
Phase | |
First received | |
Last updated | |
Start date | June 2015 |
Est. completion date | November 6, 2020 |
Verified date | November 2020 |
Source | Sykehuset Telemark |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Observational [Patient Registry] |
The Long QT syndrome is associated with potentially life-threatening cardiac arrhythmias as ventricular tachycardia (Torsade de pointes) as well as ventricular fibrillation, and might lead to syncope as well as sudden cardiac death (1). Good results have been achieved by treating patient at risk with beta blockers and implantable cardiac defibrillator (ICD). It is therefore important to diagnose the condition as early as possible as the disease is treatable (2). Prolonged QT duration might also be induced by the intake of numerous pharmaceutical substances, as well as with electrolyte disturbances, which also increases the risk of life-threatening cardiac arrhythmias. Furthermore, congenital LQTS can arise from mutations in one of at least 13 different genes. Many of these genes encode proteins which are constituents of ion channels. The genetically defined long QT syndrome has autosomal dominant (Romano Ward Syndrome) or autosomal recessive (Jervell and Lange-Nielsen Syndrome) inheritance. In this study we are using the hospital ECG database obtained with the GE Marquette 12SL ECG Analysis Program® at Telemark Hospital Skien recorded between March 2004 and April 2014. This database stores approximately 200 000 ECG recordings from 60 000 unique patients. By using the search algorithm in the MUSE ECG database, 2398 recordings have been be identified from 1603 patients where the corrected QT time is longer than 500 ms, and QRS is less than 120 ms. ECG recordings with QT intervals longer than 500 ms represents less than 1% of the population (5). Individuals having these recordings are selected for extensive clinical follow up. The patients will be offered the opportunity to have genetic analysis performed in order to distinguish between inherited or acquired long QT syndrome. The appropriate treatment will be initiated according to guidelines for patients with inherited QT syndrome. For patients with aquired long QT syndrome substitution of unfavourable pharmacotherapy or correction of electrolytes shall be performed in order to reduce their risk of cardiac arrhythmias. A T wave morphology score gives independent prognostic information useful for risk stratification. The purpose of this substudy is to examine if the T wave morphology score applied on the 1531 patients ECGs with QTc >500 ms, has independent prognostic value in this cohort.
Status | Completed |
Enrollment | 1536 |
Est. completion date | November 6, 2020 |
Est. primary completion date | November 6, 2020 |
Accepts healthy volunteers | No |
Gender | All |
Age group | N/A and older |
Eligibility | Inclusion Criteria: QT time in EKG more Tham 500 ms - Exclusion Criteria: Patient refuses to be a part of the study registry |
Country | Name | City | State |
---|---|---|---|
Norway | Sykehuset Telemark | Skien | Telemark |
Lead Sponsor | Collaborator |
---|---|
Sykehuset Telemark | Oslo University Hospital |
Norway,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | survival | Death certificate information from national register | 2004-2014 | |
Secondary | comorbidity data from hospital database Genetic defects data | Data extracted from hospital notes | 2004-2014 |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04169100 -
Novel Form of Acquired Long QT Syndrome
|
Phase 4 | |
Completed |
NCT01648205 -
Long-term Efficacy Study of Sodium Channel Blocker in LQT3 Patients
|
Phase 2 | |
Recruiting |
NCT06087367 -
Building of a Diagnostic/Prognostic Database for Human ERG Variant Effects
|
||
Recruiting |
NCT04675788 -
Novel Approaches for Minimizing Drug-Induced QT Interval Lengthening
|
Phase 4 | |
Completed |
NCT05759962 -
Phase 1 Study of LQT-1213 in Healthy Adults
|
Phase 1 | |
Enrolling by invitation |
NCT05903313 -
A Study to Evaluate Accuracy and Validity of the Chang Gung ECG Abnormality Detection Software
|
||
Terminated |
NCT02439645 -
A Registry to Determine the Clinical and Genetic Risk Factors for Torsade De Pointes
|
||
Recruiting |
NCT00221832 -
Molecular Genetic Screening and Identification of Congenital Arrhythmogenic Diseases
|
N/A | |
Completed |
NCT04706104 -
QT Measurement Techniques and Anesthesia Management
|
||
Recruiting |
NCT04336644 -
Continuous Versus Intermittent cARdiac Electrical moNitorinG
|
N/A | |
Recruiting |
NCT02814981 -
Hydroxyzine and Risk of Prolongation of QT Interval
|
N/A | |
Completed |
NCT02876380 -
Prospective Identification of Long QT Syndrome in Fetal Life
|
||
Completed |
NCT02425189 -
The Canadian National Long QT Syndrome Registry
|
||
Completed |
NCT00399412 -
ECG Signal Collection From Long QT Syndrome, Wide QRS Complexes, Heart Failure, and Cardiac Resynchronization Patients
|
N/A | |
Completed |
NCT02513940 -
Influence of Testosterone Administration on Drug-Induced QT Interval Prolongation and Torsades de Pointes
|
Phase 4 | |
Completed |
NCT03182777 -
Safety of Local Dental Anesthesia in Patients With Cardiac Channelopathies
|
N/A | |
Completed |
NCT02441829 -
Pharmacokinetics of Eleclazine in Adults With Normal and Impaired Renal Function
|
Phase 1 | |
Completed |
NCT01849003 -
Study of the Effect of GS-6615 in Subjects With LQT-3
|
Phase 1 | |
Completed |
NCT00316459 -
Study Evaluating the Effects of Multiple Oral Doses of ERB-041 on Cardiac Repolarization in Healthy Subjects
|
Phase 1 | |
Completed |
NCT00292032 -
Registry of Unexplained Cardiac Arrest
|