Clinical Trials Logo

Clinical Trial Summary

Patients are being asked to participate in this study because they have a malignant blood disease such as Myelodysplastic Syndrome (MDS), Myeloproliferative Disorder (MPD), Acute Myelogenous Leukemia (AML) or Chronic Myelogenous Leukemia (CML). We feel that patients could benefit from an allogeneic (meaning the cells come from a donor other than themself) stem cell transplant. The donor would be a family member or an unrelated person that is felt to be a good match for the patient. Stem cells are cells that are made in the bone marrow (spongy material that fills the middle of the bones). As the stem cells grow, they change into different types of blood cells that they need. This includes red blood cells that carry oxygen around the body, white blood cells that help to fight infections, and platelets that help to prevent and stop bleeding. Usually, patients are given high doses of chemotherapy before a stem cell transplant. High doses of chemo destroy the bone marrow. Healthy stem cells from a donor are then given to replace the patient's unhealthy cells. However, because of complications with the patient's disease, they have a high risk of having life-threatening side effects. These include serious damage to organs such as the lung, liver, kidney and heart. There is also an increased risk of bacterial, fungal, and viral infections. The other major problem is when a donor's stem cells (also called the graft) find that the patient's cells ( the host cells) are not the same. The donor cells may try to destroy the host's cells. The cells at high risk are those of the skin, liver and intestines. This is called graft versus host disease (GVHD) and it can be fatal.

Recently, doctors have been able to use less toxic chemotherapy treatments before patients receive their transplants. This less toxic treatment helps reduce some of the treatment related problems mentioned above. Patient's are being asked to be involved in a research study that uses this approach. One major risk of this low dose treatment is that the patient's body may reject the donor cells. This is called graft rejection. This study is designed to see if this low dose treatment is safe and effective.

This treatment plan adds CAMPATH 1H (a special protein called an antibody) to a low dose chemotherapy regimen. After chemo, the patient will receive an allogeneic (cells come from a donor) stem cell transplant. Adding CAMPATH 1H to the transplant medicines may help in treating the disease. CAMPATH 1H may reduce life-threatening and treatment related side effects like GVHD. CAMPATH 1H stays active in the body for a long time which means it may work longer to prevent GVHD. CAMPATH 1H destroys lymphocytes, a type of white cells that help fight infection, and this helps prevent graft rejection.

We want to see if the addition of CAMPATH 1H to the patient's pre-transplant low dose chemotherapy will decrease the side effects from an allogeneic stem cell transplant, while providing a curative treatment for patients with blood disorders.


Clinical Trial Description

We expect that the patient's participation in this study will last approximately 18 months to 2 years.

Before treatment begins, they will be evaluated to confirm they meet the requirements of this study. The evaluation includes HIV testing, HIV (Human Immunodeficiency Virus) is the virus that causes Acquired Immune Deficiency Syndrome (AIDS). If the patient is HIV positive, they will not be able to be treated on this protocol.

The patient will need to have a central line. This is a thin plastic catheter or tube that is placed during surgery into one of the large veins in the chest or neck. Central lines are used to give medications IV (intravenous, by vein) or to take blood samples without having to endure frequent needle sticks.

After admission to the hospital the subject will receive:

Day -6: a single dose of total body irradiation

Day -5 to Day -2 Chemotherapy: Fludarabine plus Campath 1H through a catheter inserted into a vein (IV)

Day -2: FK506 given IV over a 24 hour period until the patient can take medication by mouth. When they can take oral medication they will take this medication by mouth every 12 hours.

Day -1 : a day of rest

Day 0: the stem cell transplant (infusion) will be given

Day +7: G-CSF will be given by subcutaneous injection until your white blood cells (granulocytes) are greater than 1000/ul.

After transplantation, they will be evaluated as follows. Routine history, physical examination, blood tests and radiology studies will be done as needed for clinical care. Bone marrow aspirate and biopsy will be done on or about day 30, 60 and 100, 180 and then yearly and as needed. ;


Study Design

Endpoint Classification: Efficacy Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT00069992
Study type Interventional
Source Baylor College of Medicine
Contact
Status Terminated
Phase Phase 2
Start date December 2001
Completion date April 2007

See also
  Status Clinical Trial Phase
Recruiting NCT05691608 - MoleculAr Profiling for Pediatric and Young Adult Cancer Treatment Stratification 2 N/A
Recruiting NCT04092803 - Virtual Reality as a Distraction Technique for Performing Lumbar Punctures in Children and Young Adu N/A
Active, not recruiting NCT02530463 - Nivolumab and/or Ipilimumab With or Without Azacitidine in Treating Patients With Myelodysplastic Syndrome Phase 2
Completed NCT00948064 - Vorinostat in Combination With Azacitidine in Patients With Newly-Diagnosed Acute Myelogenous Leukemia (AML) or Myelodysplastic Syndrome (MDS) Phase 2
Completed NCT04474678 - Quality Improvement Project - "My Logbook! - I Know my Way Around!"; ("Mein Logbuch - Ich Kenne Mich Aus!") N/A
Terminated NCT00801931 - Double Cord Blood Transplant for Patients With Malignant and Non-malignant Disorders Phase 1/Phase 2
Recruiting NCT03948529 - RevErsing Poor GrAft Function With eLtrombopag After allogeneIc Hematopoietic Cell trAnsplantation Phase 2
Completed NCT01682226 - Cord Blood With T-Cell Depleted Haplo-identical Peripheral Blood Stem Cell Transplantation for Hematological Malignancies Phase 2
Completed NCT00003270 - Chemotherapy, Radiation Therapy, and Umbilical Cord Blood Transplantation in Treating Patients With Hematologic Cancer Phase 2
Active, not recruiting NCT02723994 - A Phase 2 Study of Ruxolitinib With Chemotherapy in Children With Acute Lymphoblastic Leukemia Phase 2
Terminated NCT02469415 - Pacritinib for Patients With Lower-Risk Myelodysplastic Syndromes (MDS) Phase 2
Recruiting NCT04856215 - 90Y-labelled Anti-CD66 ab in Childhood High Risk Leukaemia Phase 2
Recruiting NCT06155188 - Post-transplant PT/FLU+CY Promotes Unrelated Cord Blood Engraftment in Haplo-cord Setting in Childhood Leukemia N/A
Completed NCT00001637 - Immunosuppressive Preparation Followed by Blood Cell Transplant for the Treatment of Blood Cancers in Older Adults Phase 2
Active, not recruiting NCT04188678 - Resiliency in Older Adults Undergoing Bone Marrow Transplant N/A
Completed NCT02910583 - Ibrutinib Plus Venetoclax in Subjects With Treatment-naive Chronic Lymphocytic Leukemia /Small Lymphocytic Lymphoma (CLL/SLL) Phase 2
Completed NCT01212926 - Early Detection of Anthracycline Cardiotoxicity by Echocardiographic Analysis of Myocardial Deformation in 2D Strain N/A
Terminated NCT00014560 - Antibody Therapy in Treating Patients With Refractory or Relapsed Non-Hodgkin's Lymphoma or Chronic Lymphocytic Leukemia Phase 1
Recruiting NCT04977024 - SARS-CoV-2 Vaccine (GEO-CM04S1) Versus mRNA SARS-COV-2 Vaccine in Patients With Blood Cancer Phase 2
Recruiting NCT05866887 - Insomnia Prevention in Children With Acute Lymphoblastic Leukemia N/A