Clinical Trials Logo

Leukemia, Prolymphocytic clinical trials

View clinical trials related to Leukemia, Prolymphocytic.

Filter by:

NCT ID: NCT04526795 Active, not recruiting - Clinical trials for Refractory Acute Myeloid Leukemia

Fludarabine, Cytarabine, and Pegcrisantaspase for the Treament of Relapsed or Refractory Leukemia

Start date: April 9, 2021
Phase: Phase 1
Study type: Interventional

This phase Ib trial investigates the side effects and best dose of pegcrisantaspase when given together with fludarabine and cytarabine for the treatment of patients with leukemia that has come back (relapsed) or has not responded to treatment (refractory). Pegcrisantaspase may block the growth of cancer cells. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pegcrisantaspase in combination with fludarabine and cytarabine may work better in treating patients with leukemia compared to the combination of fludarabine and cytarabine.

NCT ID: NCT04496349 Recruiting - Clinical trials for T-Prolymphocytic Leukemia

A Study Evaluating APG-115 as a Single Agent or in Combination With APG-2575 in Subjects With T-PLL

Start date: July 12, 2021
Phase: Phase 2
Study type: Interventional

This is a multi-center, open-label, phase IIa study to evaluate the pharmacokinetics (PK), safety, and efficacy of APG-115 as a single agent or in combination with APG-2575 in patients with T-PLL. The study consists of two parts. A total of 24-36 T-PLL patients will be enrolled.

NCT ID: NCT04411043 Recruiting - Clinical trials for Prolymphocytic Leukemia

Observatory of Prolymphocytic Leukemia T

T-PLL
Start date: July 1, 2020
Phase:
Study type: Observational [Patient Registry]

Prolymphocytic leukemia T is a rare disease representing approximately 2% of mature lymphoid leukemias and 20% of prolymphocytic leukemias. It mainly affects the elderly with an aggressive clinical course. It is a hemopathy exhibiting a post thymic T phenotype (Tdt-, CD1a-, CD5 +, CD2 + and CD7 +), generally CD4 + / CD8-, but also CD4 + / CD8 + or CD8 + / CD4-. The main feature of T-PLL is the rearrangement of chromosome 14 involving genes encoding the T cell receptor complex (TCR) subunits, leading to overexpression of the proto-oncogene TCL1. On the molecular level, the study of Prolymphocytic leukemia T shows a substantial mutational activation of the IL2RG-JAK1-JAK3-STAT5B axis. Patients with Prolymphocytic leukemia T have a poor prognosis, due to a poor response to conventional chemotherapy. Treatment with the anti-CD52 monoclonal antibody: alemtuzumab has considerably improved the results, but the responses to treatment are transient; therefore, patients who obtain a response to alemtuzumab treatment are candidates for stem cell allograft (TSS) if they are eligible for this procedure. This combined approach extended the median survival to four years or more. However, new approaches using well-tolerated therapies that target signaling and survival pathways are necessary for most patients who are unable to receive intensive chemotherapy, such as JAK STAT axis inhibitors, anti-AKT, or anti BCL2 . Main objective: Better manage prolymphocytic T leukemias. Secondary objectives: - Molecular characterization of prolymphocytic leukemia T. - Study of the response to treatment, disease-free survival, overall survival. - Impact of prognostic factors on response to treatment, and survival.

NCT ID: NCT04312841 Active, not recruiting - Clinical trials for Chronic Lymphocytic Leukemia

Letermovir for the Prevention of Cytomegalovirus Reactivation in Patients With Hematological Malignancies Treated With Alemtuzumab

Start date: September 15, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well letermovir works for the prevention of cytomegalovirus reactivation in patients with hematological malignancies treated with alemtuzumab. Patients receiving treatment with alemtuzumab may experience cytomegalovirus reactivation. Letermovir may block cytomegalovirus replication and prevent infection.

NCT ID: NCT04195633 Recruiting - Clinical trials for Acute Myeloid Leukemia

Donor Stem Cell Transplant With Treosulfan, Fludarabine, and Total-Body Irradiation for the Treatment of Hematological Malignancies

Start date: January 25, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well a donor stem cell transplant, treosulfan, fludarabine, and total-body irradiation work in treating patients with blood cancers (hematological malignancies). Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient's immune cells and help destroy any remaining cancer cells.

NCT ID: NCT04191187 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Reduced Intensity Flu/Mel/TBI Conditioning for HAPLO HCT Patients With Hematologic Malignancies

Start date: December 6, 2019
Phase: Phase 2
Study type: Interventional

This is a single arm, phase II trial of HLA-haploidentical related hematopoietic cells transplant (Haplo-HCT) using reduced intensity conditioning (fludarabine and melphalan and total body irradiation). Peripheral blood is the donor graft source. This study is designed to estimate disease-free survival (DFS) at 18 months post-transplant.

NCT ID: NCT03989466 Active, not recruiting - Clinical trials for T-Cell Prolymphocytic Leukemia

Itacitinib and Alemtuzumab in Treating Patients With T-Cell Prolymphocytic Leukemia

Start date: January 15, 2020
Phase: Phase 1
Study type: Interventional

This phase Ib trial studies the side effects and best dose of alemtuzumab when given together with itacitinib in treating patients with T-cell prolymphocytic leukemia. Itacitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with alemtuzumab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving itacitinib and alemtuzumab may work better in treating patients with T-cell prolymphocytic leukemia compared to standard of care treatment.

NCT ID: NCT03873493 Completed - Cancer Clinical Trials

A Study Evaluating the Efficacy of Venetoclax Plus Ibrutinib in Participants With T-cell Prolymphocytic Leukemia

Start date: January 14, 2020
Phase: Phase 2
Study type: Interventional

The main objective of this study is to evaluate the efficacy of the combination of venetoclax plus ibrutinib for treating adults with T-cell prolymphocytic leukemia (T-PLL).

NCT ID: NCT03479268 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Pevonedistat and Ibrutinib in Treating Participants With Relapsed or Refractory CLL or Non-Hodgkin Lymphoma

Start date: March 22, 2018
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of pevonedistat when given together with ibrutinib in participants with chronic lymphocytic leukemia or non-Hodgkin lymphoma that has come back or has stopped responding to other treatments. Pevonedistat and ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03314974 Recruiting - Multiple Myeloma Clinical Trials

Myeloablative Allo HSCT With Related or Unrelated Donor for Heme Disorders

Start date: March 30, 2018
Phase: Phase 2
Study type: Interventional

This is a Phase II study of allogeneic hematopoietic stem cell transplant (HCT) using a myeloablative preparative regimen (of either total body irradiation (TBI); or, fludarabine/busulfan for patients unable to receive further radiation). followed by a post-transplant graft-versus-host disease (GVHD) prophylaxis regimen of post-transplant cyclophosphamide (PTCy), tacrolimus (Tac), and mycophenolate mofetil (MMF).