View clinical trials related to Leukemia, Prolymphocytic, T-Cell.
Filter by:The main objective of this study is to evaluate the efficacy of the combination of venetoclax plus ibrutinib for treating adults with T-cell prolymphocytic leukemia (T-PLL).
Background: Adult T-cell leukemia (ATL) is a rare blood cancer. Researchers want to see if a combination of two drugs - recombinant human interleukin 15 (rhIL-15) and alemtuzumab - is a better treatment for ATL. Objectives: To test if giving rhIL-15 combined with alemtuzumab improves the outcome of therapy for ATL. Also, to determine the safe dose of this combination and identify side effects and effects on the immune system. Eligibility: Adults 18 years and older with chronic or acute ATL who have not been helped by other treatments. Design: Participants will be screened with tests that are mostly part of their usual cancer care. They will sign a separate consent form for this. Weeks 1 and 2: Participants will have a total of 10 visits. They will: - Get rhIL-15 under the skin by needle. - Have a physical exam and vital signs measured. - Give blood samples. - Answer questions about their health and their medicines. Week 3: Participants will stay in the clinic. They will: - Get alemtuzumab infusions in a vein through a small catheter on days 1, 2, 3, and 5. - Take medicines to decrease side effects. - Have a computed tomography (CT) scan to evaluate the treatment. - Have a physical exam and vital signs measured. - Give blood samples. Answer questions about their health and medicines. Weeks 4, 5, and 6 will repeat week 3, without the CT scan. Some patients will just have outpatient visits these weeks. After treatment, participants will have follow-up visits every few months for up to 2 years. At these visits, participants will give blood samples and have CT scans.
This phase II trial studies how well sirolimus, cyclosporine and mycophenolate mofetil works in preventing graft-vs-host disease (GVHD) in patients with blood cancer undergoing donor peripheral blood stem cell (PBSC) transplant. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation together with sirolimus, cyclosporine, and mycophenolate mofetil before and after transplant may stop this from happening.
Study hypothesis: Simultaneous FMC-Alemtuzumab administration followed by Alemtuzumab maintenance therapy in patients with T-PLL is feasible, safe and efficient.
This phase II trial studies autologous peripheral blood stem cell transplant followed by donor bone marrow transplant in treating patients with high-risk Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, or chronic lymphocytic leukemia. Autologous stem cell transplantation uses the patient's stem cells and does not cause graft versus host disease (GVHD) and has a very low risk of death, while minimizing the number of cancer cells. Peripheral blood stem cell (PBSC) transplant uses stem cells from the patient or a donor and may be able to replace immune cells that were destroyed by chemotherapy. These donated stem cells may help destroy cancer cells. Bone marrow transplant known as a nonmyeloablative transplant uses stem cells from a haploidentical family donor. Autologous peripheral blood stem cell transplant followed by donor bone marrow transplant may work better in treating patients with high-risk Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, or chronic lymphocytic leukemia.
This is a four-part dose-escalation and confirmation study in participants with advanced solid tumors. Part A is for dose escalation and determination of maximum tolerated dose (MTD) and recommended Phase 2 dose (RP2D) of MK-4827. Part B is a prostate/ovarian cancer cohort expansion. Part C is for a cohort of participants with relapsed or refractory T-cell prolymphocytic leukemia (T-PLL) or chronic lymphocytic leukemia (CLL). Part D will be for a cohort of participants with locally advanced or metastatic colorectal carcinoma (CRC), persistent or recurrent endometrial carcinoma, locally advanced or metastatic triple negative or highly proliferative estrogen receptor positive (ER+) breast cancer, or partially platinum-sensitive epithelial ovarian cancer. The study is also designed to find out whether MK-4827 causes at least 50% inhibition of poly adenosine diphosphate ribose polymerase (PARP) enzyme activity.
This clinical trial studies how well giving fludarabine phosphate together with total-body irradiation (TBI) before donor peripheral blood stem cell transplant works in treating patients with chronic lymphocytic leukemia or small lymphocytic leukemia. Giving low doses of chemotherapy, such as fludarabine phosphate, and TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy before or after peripheral blood stem cell transplant also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil before and after the transplant may stop this from happening.
This phase I/II trial studies how well autologous stem cell transplant followed by donor stem cell transplant works in treating patients with lymphoma that has returned or does not respond to treatment. Peripheral blood stem cell transplant using stem cells from the patient or a donor may be able to replace immune cells that were destroyed by chemotherapy used to kill cancer cells. The donated stem cells may also help destroy any remaining cancer cells (graft-versus-tumor effect).