Clinical Trials Logo

Leukemia, Myelomonocytic, Acute clinical trials

View clinical trials related to Leukemia, Myelomonocytic, Acute.

Filter by:

NCT ID: NCT00462605 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

MS-275 and GM-CSF in Treating Patients With Myelodysplastic Syndrome and/or Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphocytic Leukemia

Start date: April 2007
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well giving MS-275 together with GM-CSF works in treating patients with myelodysplastic syndrome and/or relapsed or refractory acute myeloid leukemia. MS-275 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Colony-stimulating factors, such as GM-CSF, may increase the number of immune cells found in bone marrow or peripheral blood. Giving MS-275 together with GM-CSF may be an effective treatment for myelodysplastic syndrome and acute myeloid leukemia

NCT ID: NCT00451048 Completed - Clinical trials for Myelodysplastic Syndromes

Sunitinib in Treating Patients With Myelodysplastic Syndromes or Chronic Myelomonocytic Leukemia

Start date: February 2007
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well sunitinib works in treating patients with myelodysplastic syndromes or chronic myelomonocytic leukemia. Sunitinib may stop the growth of abnormal cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT00408681 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Lithium Carbonate in Treating Patients With Acute Intestinal Graft-Versus-Host-Disease After Donor Stem Cell Transplant

Start date: June 2006
Phase: N/A
Study type: Interventional

RATIONALE: Lithium carbonate may be an effective treatment for intestinal graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This clinical trial is studying lithium carbonate in treating patients with acute intestinal graft-versus-host-disease after donor stem cell transplant.

NCT ID: NCT00407966 Completed - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

Start date: October 2006
Phase: Phase 2
Study type: Interventional

This phase II trial is studying the side effects and how well giving alvocidib together with cytarabine and mitoxantrone works in treating patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as alvocidib, cytarabine, and mitoxantrone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells.

NCT ID: NCT00383474 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Tipifarnib and Bortezomib in Treating Patients With Acute Leukemia or Chronic Myelogenous Leukemia in Blast Phase

Start date: August 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of tipifarnib and bortezomib in treating patients with acute leukemia or chronic myelogenous leukemia in blast phase. Tipifarnib and bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving tipifarnib together with bortezomib may kill more cancer cells.

NCT ID: NCT00381550 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

3-AP and Fludarabine in Treating Patients With Myeloproliferative Disorders, Chronic Myelomonocytic Leukemia, or Accelerated Phase or Blastic Phase Chronic Myelogenous Leukemia

Start date: August 2006
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well giving 3-AP together with fludarabine works in treating patients with myeloproliferative disorders (MPD), chronic myelomonocytic leukemia (CMML), or accelerated phase or blastic phase chronic myelogenous leukemia. Drugs used in chemotherapy, such as 3-AP and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. 3-AP may help fludarabine work better by making cancer cells more sensitive to the drug. 3-AP and fludarabine may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving 3-AP together with fludarabine may kill more cancer cells.

NCT ID: NCT00369317 Completed - Clinical trials for Secondary Acute Myeloid Leukemia

Combination Chemotherapy in Treating Young Patients With Down Syndrome and Acute Myeloid Leukemia or Myelodysplastic Syndromes

Start date: March 2007
Phase: Phase 3
Study type: Interventional

This phase III trial is studying how well combination chemotherapy works in treating young patients with Down syndrome and acute myeloid leukemia or myelodysplastic syndromes. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells.

NCT ID: NCT00363974 Completed - Clinical trials for Leukemia, Myelomonocytic, Acute

Study of XIAP Antisense Given With Chemotherapy for Refractory/Relapsed AML

Start date: October 2005
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this study is to determine if the drug, called AEG35156, can be safely given to AML patients and whether it effectively reduces levels of a protein (XIAP) to increase the sensitivity of cancer cells to chemotherapy (ara-C and idarubicin) in patients with refractory or relapsed AML.

NCT ID: NCT00357708 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Vorinostat and Decitabine in Treating Patients With Relapsed, Refractory, or Poor-Prognosis Hematologic Cancer or Other Diseases

Start date: June 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat and decitabine in treating patients with relapsed, refractory, or poor-prognosis hematologic cancer or other diseases. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with decitabine may kill more cancer cells

NCT ID: NCT00357305 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Vorinostat, Cytarabine, and Etoposide in Treating Patients With Relapsed and/or Refractory Acute Leukemia or Myelodysplastic Syndromes or Myeloproliferative Disorders

Start date: May 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat when given together with cytarabine and etoposide in treating patients with relapsed or refractory acute leukemia or myelodysplastic syndromes or myeloproliferative disorders. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with cytarabine and etoposide may kill more cancer cells.