View clinical trials related to Leukemia, Myelomonocytic, Acute.
Filter by:This pilot clinical trial studies if cells donated by a close genetic relative can help maintain acute myeloid leukemia (AML) complete remission (CR). Eligible patients will receive a standard induction chemotherapy. If a complete remission results they will receive irradiated allogeneic cells from a HLA haploidentical relative. Only patients who obtain a CR after the standard induction chemotherapy are eligible for the experimental therapy (irradiated haploidentical cells).
This randomized phase III trial studies clofarabine to see how well it works compared with daunorubicin hydrochloride and cytarabine when followed by decitabine or observation in treating older patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as clofarabine, daunorubicin hydrochloride, cytarabine, and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which chemotherapy regimen is more effective in treating acute myeloid leukemia.
This phase II trial studies how well eltrombopag olamine works in improving the recovery of platelet counts in older patients with Acute Myeloid Leukemia (AML) undergoing induction (the first treatment given for a disease) chemotherapy. Platelet counts recover more slowly in older patients, leading to risk of complications and the delay of post-remission therapy. Eltrombopag olamine may cause the body to make platelets after chemotherapy.
This phase I trial studies the MEK inhibitor MEK162 to see if it is safe in patients when combined with idarubicin and cytarabine. MEK inhibitor MEK162 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving MEK inhibitor MEK162, cytarabine, and idarubicin may be an effective treatment for acute myeloid leukemia.
This phase 2 trial studies how well ixazomib(MLN9708) works in treating study participants with relapsed or refractory acute myeloid leukemia. Ixazomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies the side effects and how well omacetaxine mepesuccinate, cytarabine, and decitabine work in treating older patients with newly diagnosed acute myeloid leukemia. Omacetaxine mepesuccinate, cytarabine, and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase 2 clinical trial studies how well CPX-351 (liposomal cytarabine-daunorubicin) works in treating patients with relapsed or refractory acute myeloid leukemia or myelodysplastic syndrome. Drugs used in chemotherapy, such as CPX-351, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.
To identify the maximum tolerated dose (MTD) of oral azacitidine on different treatment schedules in Japanese subjects with hematological neoplasms
This phase I trial studies the side effects and the best dose of lenalidomide when given together with combination chemotherapy in treating patients with relapsed or refractory acute myeloid leukemia. Lenalidomide may stop the growth of acute myeloid leukemia by blocking blood flow to the cancer. Drugs used in chemotherapy, such as mitoxantrone hydrochloride, etoposide, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving lenalidomide and combination chemotherapy may be an effective treatment for acute myeloid leukemia.
This phase I/II trial studies the side effects and best dose of quizartinib when given in combination with azacitidine or cytarabine in treating patients with acute myeloid leukemia or myelodysplastic syndrome that have come back (relapsed) or are not responding to treatment (refractory). Quizartinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine and cytarabine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving quizartinib with azacitidine or cytarabine may work better in patients with acute myeloid leukemia or myelodysplastic syndrome.