Clinical Trials Logo

Leukemia, Myelomonocytic, Acute clinical trials

View clinical trials related to Leukemia, Myelomonocytic, Acute.

Filter by:

NCT ID: NCT00602771 Completed - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Tipifarnib and Etoposide in Treating Older Patients With Newly Diagnosed, Previously Untreated Acute Myeloid Leukemia

Start date: January 2008
Phase: Phase 2
Study type: Interventional

This randomized phase II trial is studying the side effects and how well giving tipifarnib together with etoposide works in treating older patients with newly diagnosed, previously untreated acute myeloid leukemia. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving tipifarnib together with etoposide may kill more cancer cells.

NCT ID: NCT00588991 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Veliparib and Topotecan With or Without Carboplatin in Treating Patients With Relapsed or Refractory Acute Leukemia, High-Risk Myelodysplasia, or Aggressive Myeloproliferative Disorders

Start date: November 28, 2007
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of veliparib when given together with topotecan hydrochloride with or without carboplatin in treating patients with relapsed or refractory acute leukemia, high-risk myelodysplasia, or aggressive myeloproliferative disorders. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as topotecan hydrochloride and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving veliparib together with topotecan hydrochloride and carboplatin may kill more cancer cells.

NCT ID: NCT00528983 Completed - Clinical trials for Myelodysplastic Syndromes (MDS)

Safety, Pharmacokinetics, and Pharmacodynamics of Oral Azacitidine in Subjects With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia and Acute Myelogenous Leukemia

Start date: September 11, 2007
Phase: Phase 1
Study type: Interventional

The purpose of this study is to determine whether a tablet form of azacitidine that taken by mouth is safe. This Phase I study will also look at different doses and different treatment schedules in order to better understand the effects (positive and negative) of oral azacitidine on the body and on the disease MDS, AML and CMML.

NCT ID: NCT00509600 Terminated - Leukemia Clinical Trials

Etanercept (Enbrel) for Juvenile Myelomonocytic Leukemia

Start date: September 2004
Phase: Phase 2
Study type: Interventional

Primary Objectives: 1.1 Estimate rate of response and define acute toxicity to etanercept used in an up-front phase II window in newly diagnosed or relapsed JMML. 1.2 Determine if response to Tumor Necrosis Factor (TNF) blockade correlates with genetic basis of Juvenile Myelomonocytic Leukemia (JMML) [mutations in NF1, Ras, SHP2] or levels of TNFa. 1.3 Determine if TNF blockade by etanercept results in inhibition of free levels of TNFa and other cytokines by ELISA and bioassay and improves blood counts. 1.4 Estimate the two year event free survival and overall survival in JMML patients following etanercept and allogeneic hematopoietic stem cell transplantation.

NCT ID: NCT00509249 Terminated - Clinical trials for Chronic Myelomonocytic Leukemia

Aflibercept in Treating Patients With Myelodysplastic Syndromes

Start date: September 2007
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well aflibercept works in treating patients with myelodysplastic syndromes. Aflibercept may be able to carry cancer-killing substances directly to myelodysplastic syndrome cells. It may also stop the growth of cancer cells by blocking blood flow to the cancer

NCT ID: NCT00489203 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Beclomethasone Dipropionate in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

Start date: April 2007
Phase: Phase 2
Study type: Interventional

RATIONALE: Beclomethasone dipropionate may be effective in preventing acute graft-versus-host disease in patients undergoing a stem cell transplant for hematologic cancer. PURPOSE: This randomized phase II trial is studying how well beclomethasone dipropionate works in preventing acute graft-versus-host disease in patients undergoing a donor stem cell transplant for hematologic cancer.

NCT ID: NCT00470197 Completed - Malignant Neoplasm Clinical Trials

Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Relapsed or Refractory Acute Leukemia

Start date: April 2007
Phase: Phase 1
Study type: Interventional

Drugs used in chemotherapy, such as flavopiridol, cytarabine, and mitoxantrone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving a new schedule of more than one drug (combination chemotherapy) may kill more cancer cells. This phase I trial is studying the side effects, best dose, and best schedule for flavopiridol when given together with cytarabine and mitoxantrone in treating patients with relapsed or refractory acute leukemia.

NCT ID: NCT00462605 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

MS-275 and GM-CSF in Treating Patients With Myelodysplastic Syndrome and/or Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphocytic Leukemia

Start date: April 2007
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well giving MS-275 together with GM-CSF works in treating patients with myelodysplastic syndrome and/or relapsed or refractory acute myeloid leukemia. MS-275 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Colony-stimulating factors, such as GM-CSF, may increase the number of immune cells found in bone marrow or peripheral blood. Giving MS-275 together with GM-CSF may be an effective treatment for myelodysplastic syndrome and acute myeloid leukemia

NCT ID: NCT00451048 Completed - Clinical trials for Myelodysplastic Syndromes

Sunitinib in Treating Patients With Myelodysplastic Syndromes or Chronic Myelomonocytic Leukemia

Start date: February 2007
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well sunitinib works in treating patients with myelodysplastic syndromes or chronic myelomonocytic leukemia. Sunitinib may stop the growth of abnormal cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT00408681 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Lithium Carbonate in Treating Patients With Acute Intestinal Graft-Versus-Host-Disease After Donor Stem Cell Transplant

Start date: June 2006
Phase: N/A
Study type: Interventional

RATIONALE: Lithium carbonate may be an effective treatment for intestinal graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This clinical trial is studying lithium carbonate in treating patients with acute intestinal graft-versus-host-disease after donor stem cell transplant.