Clinical Trials Logo

Leukemia, Myeloid clinical trials

View clinical trials related to Leukemia, Myeloid.

Filter by:

NCT ID: NCT02091245 Active, not recruiting - Clinical trials for Refractory Acute Lymphoblastic Leukemia (ALL)

Phase I Trial of the Selective Inhibitor of Nuclear Export, KPT-330, in Relapsed Childhood ALL and AML

Start date: March 2014
Phase: Phase 1
Study type: Interventional

This research study involves participants who have acute lymphoblastic or acute myelogenous leukemia that has relapsed or has become resistant (or refractory) to standard therapies. This research study is evaluating a drug called KPT-330. Laboratory and other studies suggest that the study drug, KPT-330, may prevent leukemia cells from growing and may lead to the destruction of leukemia cells. It is thought that KPT-330 activates cellular processes that increase the death of leukemia cells. The main goal of this study is to evaluate the side effects of KPT-330 when it is administered to children and adolescents with relapsed or refractory leukemia.

NCT ID: NCT02085408 Active, not recruiting - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

Start date: February 4, 2011
Phase: Phase 3
Study type: Interventional

This randomized phase III trial studies clofarabine to see how well it works compared with daunorubicin hydrochloride and cytarabine when followed by decitabine or observation in treating older patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as clofarabine, daunorubicin hydrochloride, cytarabine, and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which chemotherapy regimen is more effective in treating acute myeloid leukemia.

NCT ID: NCT02071901 Active, not recruiting - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Eltrombopag Olamine in Improving Platelet Recovery in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

Start date: August 14, 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well eltrombopag olamine works in improving the recovery of platelet counts in older patients with Acute Myeloid Leukemia (AML) undergoing induction (the first treatment given for a disease) chemotherapy. Platelet counts recover more slowly in older patients, leading to risk of complications and the delay of post-remission therapy. Eltrombopag olamine may cause the body to make platelets after chemotherapy.

NCT ID: NCT02061800 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome (MDS)

CD34+ (Malignant) Stem Cell Selection for Patients Receiving Allogenic Stem Cell Transplant

Start date: June 3, 2013
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this study is to learn more about the effects of (classification determinant) CD34+ stem cell selection on graft versus host disease (GVHD) in children, adolescents, and young adults. CD34+ stem cells are the cells that make all the types of blood cells in the body. GVHD is a condition that results from a reaction of transplanted donor T-lymphocytes (a kind of white blood cell) against the recipient's body and organs. Study subjects will be offered treatment involving the use of the CliniMACS® Reagent System (Miltenyi Biotec), a CD34+ selection device to remove T-cells from a peripheral blood stem cell transplant in order to decrease the risk of acute and chronic GVHD. This study involves subjects who are diagnosed with a malignant disease, that has either failed standard therapy or is unlikely to be cured with standard non-transplant therapy, who will receive a peripheral blood stem cell transplant. A malignant disease includes the following: Chronic Myeloid Leukemia (CML) in chronic phase, accelerated phase or blast crisis; Acute Myelogenous Leukemia (AML); Myelodysplastic Syndrome (MDS); Juvenile Myelomonocytic Leukemia (JMML); Acute Lymphoblastic Leukemia (ALL); or Lymphoma (Hodgkin's and Non-Hodgkin's).

NCT ID: NCT01894477 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Treo/Flu/TBI With Donor Stem Cell Transplant for Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia

Start date: November 2013
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well treosulfan and fludarabine phosphate, with or without total body irradiation before donor stem cell transplant works in treating patients with myelodysplastic syndrome or acute myeloid leukemia. Giving chemotherapy, such as treosulfan and fludarabine phosphate, and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus before and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT01885689 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Clofarabine and Melphalan Before Donor Stem Cell Transplant in Treating Patients With Myelodysplasia, Acute Leukemia in Remission, or Chronic Myelomonocytic Leukemia

Start date: February 10, 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well clofarabine and melphalan before a donor stem cell transplant works in treating patients with a decrease in or disappearance of signs and symptoms of myelodysplasia or acute leukemia (disease is in remission), or chronic myelomonocytic leukemia. Giving chemotherapy, such as clofarabine and melphalan, before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into a patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving clofarabine and melphalan before transplant may help prevent the cancer from coming back after transplant, and they may cause fewer side effects than standard treatment.

NCT ID: NCT01870596 Active, not recruiting - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Cytarabine With or Without SCH 900776 in Treating Adult Patients With Relapsed Acute Myeloid Leukemia

Start date: May 2013
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well cytarabine with or without SCH 900776 works in treating adult patients with relapsed acute myeloid leukemia. Drugs used in chemotherapy, such as cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or stopping them from dividing. SCH 900776 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether cytarabine is more effective with or without SCH 900776 in treating acute myeloid leukemia.

NCT ID: NCT01869114 Active, not recruiting - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Sirolimus and Azacitidine in Treating Patients With High Risk Myelodysplastic Syndrome or Acute Myeloid Leukemia That is Recurrent or Not Eligible for Intensive Chemotherapy

Start date: July 8, 2013
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well sirolimus and azacitidine works in treating patients with high-risk myelodysplastic syndrome or recurrent acute myeloid leukemia. Sirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Sirolimus and azacitidine may kill more cancer cells.

NCT ID: NCT01861314 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Bortezomib, Sorafenib Tosylate, and Decitabine in Treating Patients With Acute Myeloid Leukemia

Start date: July 3, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and the best dose of bortezomib and sorafenib tosylate when given together with decitabine in treating patients with acute myeloid leukemia. Bortezomib and sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving bortezomib and sorafenib tosylate together with decitabine may work better in treating acute myeloid leukemia.

NCT ID: NCT01809392 Active, not recruiting - Clinical trials for Myelodysplastic Syndromes

Decitabine Augments for Post Allogeneic Stem Cell Transplantation in Patients With Acute Myeloid Leukemia and Myelodysplastic Syndrome

Start date: January 2013
Phase: Phase 2/Phase 3
Study type: Interventional

Allo - hematopoietic stem cell transplantation is currently the only way to cure myelodysplastic syndrome /acute leukemia . The existing experimental results showed that decitabine and 5-azacytidine up-regulated the expression of tumor Ags on leukemic blasts in vitro and expanded the numbers of immunomodulatory T regulatory cells in animal models. Reasoning that decitabine might selectively augment a graft versus leukemia effect, the investigators used decitabine administration after allogeneic stem cell transplantation to studied the immunologic sequelae.