Clinical Trials Logo

Leukemia, Myeloid clinical trials

View clinical trials related to Leukemia, Myeloid.

Filter by:

NCT ID: NCT06368414 Not yet recruiting - Clinical trials for Chronic Myeloid Leukemia, Chronic Phase

A Study of Treatment-free Remission in Chronic Phase Chronic Myeloid Leukemia

AsterA
Start date: September 1, 2024
Phase: Phase 2
Study type: Interventional

To evaluate the efficacy of asciminib adding on tyrosine-kinase inhibitors (TKI) to achieve treatment-free remission (TFR) in chronic myeloid leukemia (CML) patients in chronic phase who failed prior cessation study of TKI

NCT ID: NCT06362031 Withdrawn - Clinical trials for Acute Myeloid Leukemia

A Study to Explore Treatment Patterns, Treatment Outcomes, Healthcare Resource Utilization in Adult Participants With Acute Myeloid Leukemia (AML) Receiving Venetoclax Through Chart Review

Start date: June 1, 2023
Phase:
Study type: Observational

Acute myeloid leukemia (AML), also referred to as acute myelogenous leukemia or acute non-lymphocytic leukemia, is a relatively rare, yet aggressive, type of cancer. This study will evaluate treatment patterns, treatment outcomes, healthcare resource utilization in adult participants with AML receiving venetoclax. Data from up to 700 participants will be collected. No participants will be enrolled in this study. Participants' charts will be reviewed. No drug will be administered as a part of this study. The duration of the observation period is up to 10 months. There is no additional burden for participants in this trial. All visits must be completed prior to data extraction and participants will be followed for up to 10 months.

NCT ID: NCT06357182 Not yet recruiting - Clinical trials for Acute Myeloid Leukemia

Iadademstat in Combination With Azacitidine and Venetoclax in Treating Newly Diagnosed Acute Myeloid Leukemia

Start date: May 8, 2024
Phase: Phase 1
Study type: Interventional

This phase I trial tests the safety, side effects, and best dose of iadademstat when given together with azacitidine and venetoclax in treating patients with newly diagnosed acute myeloid leukemia (AML). Iadademstat inhibits the LSD1 protein and may lead to inhibition of cell growth in LSD1-overexpressing cancer cells. Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax is in a class of medications called B-cell lymphoma-2 (Bcl-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving iadademstat with azacitidine and venetoclax may be safe, tolerable and/or effective in treating patients with newly diagnosed AML who cannot undergo intensive chemotherapy.

NCT ID: NCT06355583 Not yet recruiting - Clinical trials for Acute Myeloid Leukemia

Intestinal Microbiota Transplant Prior to Allogeneic Stem Cell Transplant (MAST) Trial

MAST
Start date: April 15, 2024
Phase: Phase 2
Study type: Interventional

The goal of this clinical trial is to test the ability to restore gut microbiota to healthier levels in patients with blood cancers scheduled to have stem cell transplant. The main questions it aims to answer are: - Tolerability and acceptability of intestinal microbiota transplantation (IMT) versus placebo (as assessed via patient perspective questionnaires - Changes in gut microbiome diversity across all timepoints - Markers of general health, infective/microbiological and haematological outcomes including, days of fever, admission to intensive care unit, survival, non-relapsed mortality, and incidence of graft-versus-host disease across all time points measured. Participants will be asked at their routine follow up visits to, - Provide stool, urine and blood samples at the scheduled study visits - Complete questionnaires at selected visits - Swallow either Placebo or IMT capsules once at the second study visit which will occur 2 weeks prior to the stem cell transplant (+/-3 days) Researchers will compare IMT capsules and Placebo to investigate the change in gut microbiota diversity.

NCT ID: NCT06351306 Recruiting - Clinical trials for Acute Myeloid Leukemia

DEC-C and Thioguanine for R/R AML

Start date: January 30, 2024
Phase: Phase 2
Study type: Interventional

The purpose of this study is to find out if oral decitabine-cedazuridine (Inqovi®) is effective, safe, and able to be tolerated without severe side effects when given with thioguanine (Tabloid®) in patients with acute myeloid leukemia (AML) whose disease has returned or did not respond to treatment (relapsed or refractory). This is a "phase II trial with a safety lead-in." The goal of the lead-in portion of the study is to make sure participants are getting the highest dose of medications that are safe. If too many serious side effects are seen with the dose previously studied, some additional patients may be treated with a lower dose to make sure that this dose is safe.

NCT ID: NCT06347458 Not yet recruiting - Leukemia Clinical Trials

BG1805 Injection in the Treatment of Relapsed or Refractory Acute Myeloid Leukemia in Children

Start date: April 2024
Phase: Phase 1
Study type: Interventional

This is a single-arm, single-dose dose-escalation and dose-expansion study.

NCT ID: NCT06345365 Recruiting - Clinical trials for Acute Myeloid Leukaemia

MA+AZA Regimen for the Treatment of Newly Diagnosed Acute Myeloid Leukemia (AML)

Start date: January 18, 2024
Phase: Phase 3
Study type: Interventional

Investigator proposed to apply the new dosage form of mitoxantrone hydrochloride liposomes to the clinical treatment of AML, while combining with cytarabine and azacitidine to form the MA+AZA treatment regimen(Mitoxantrone liposome +Ara-Cytarabine+Azacitidine), which would provide an optimal induction treatment regimen for patients with primary AML by comparing with the traditional chemotherapy regimen, DA+AZA (Daunorubicin+Ara-Cytarabine+Azacitidine).

NCT ID: NCT06345027 Not yet recruiting - Lymphoma Clinical Trials

CHIMERIC ANTIGEN RECEPTOR TREATMENT TARGETING CD70 (SEVENTY)

CASEY
Start date: April 1, 2024
Phase: Phase 1
Study type: Interventional

This study is for patients that have lymph gland disease called Hodgkin or non-Hodgkin Lymphoma or T/NK-lymphoproliferative disease and the patients condition has come back or has not gone away after treatment, including the best treatment we know for these diseases. Some patients with Lymphoma or T/NK-lymphoproliferative disease show signs of virus that is sometimes called Epstein Barr virus (EBV). This virus causes mononucleosis or glandular fever ("mono") before or at the time of their diagnosis. EBV is found in the cancer cells of up to half the patients with Hodgkin's and non-Hodgkin Lymphoma. This suggests that the EBV plays a role in causing Lymphoma. The cancer cells (in lymphoma) and some immune system cells infected by EBV are able to hide from the body's immune system and escape destruction. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including cells infected with viruses and tumor cells. T cells have been used to treat patients with cancers. T cells, that have been trained to kill EBV infected cells can survive in blood and affect the tumor. We have treated over 80 people on studies using T cells to target these diseases. About half of those patients who had disease at the time they got the cells had responses including some patients with complete responses (meaning the cancer could no longer be detected). We think that if T cells are able to last longer in the body, they may have a better chance of killing EBV and EBV infected tumor cells. Therefore, in this study we will add a new gene to the EBV T cells that can cause the cells to live longer called C7R. We know that T cells need substances called cytokines (substances such as proteins released by specific cells of the immune system) to survive and that the cells may not get enough cytokines after the cells are infused into the body. We have added the gene C7R that gives the cells a constant supply of cytokine and helps them to survive for a longer period of time. The purpose of this study is to find the largest safe dose of C7R-EBV T cells, and additionally to evaluate how long they can be detected in the blood and what affect they have on the cancer.

NCT ID: NCT06337331 Not yet recruiting - Clinical trials for Acute Myeloid Leukemia

Adding Venetoclax to the High-dose Chemotherapy Regimen Prior to Mismatche Allogeneic Stem Cell Transplant

Start date: August 31, 2024
Phase: Phase 2
Study type: Interventional

Patients eligible for a mismatch allogeneic stem cell transplant will receive Venetoclax daily for 7 days prior to transplant in addition to the following chemotherapy regimen: Decitabine daily for 5 days, Fludarabine daily for 5 days, and Busulfan daily for 2 days followed by 1 day of total body irradiation. Stem cell transplant will occur thereafter.

NCT ID: NCT06329999 Recruiting - Clinical trials for Myelodysplastic Syndrome

A Prospective, Multicenter, and Exploratory Study of CMGV in the Treatment of Recurrent Adult AML and MDS-EB-2/Elder AML

Start date: February 3, 2024
Phase: N/A
Study type: Interventional

The goal of this clinical trial] is to evaluate mitoxantrone hydrochloride liposomes, subcutaneous injection of cytarabine and G-CSF combined with Venetoclax (CMG+Ven) in adult secondary acute myeloid leukemia and myelodysplastic syndrome with increased primordial cells type 2(MDS-IB2) or elderly acute myeloid leukemia]. The main questions it aims to answer are: - Evaluation of the efficacy - Evaluation of the safety