View clinical trials related to Leukemia, Myeloid.
Filter by:This phase I/II trial studies the side effects and best dose of donor lymphocyte infusions when given together with daratumumab and to see how well they work in treating participants with acute myeloid leukemia that has come back after a stem cell transplant. A donor lymphocyte infusion is a type of therapy in which lymphocytes (white blood cells) from the blood of a donor are given to a participant who has already received a stem cell transplant from the same donor. The donor lymphocytes may kill remaining cancer cells. Monoclonal antibodies, such as daratumumab, may interfere with the ability of cancer cells to grow and spread. Giving daratumumab and donor white blood cells may work better in treating participants with acute myeloid leukemia.
1. Detection of IDH2 mutations in AML patients to define it incidence and correlation with clinical characteristics, relapse-free and overall survival. 2. Identify AML patients who are potential candidates for IDH2 inhibitor treatment. 3. Monitoring minimal residual disease (MRD) following therapy to evaluate its possible role in the strategy of MRD-directed therapy in the future in patients carrying IDH2 mutations at initial diagnosis.
This phase I/II trial studies the side effects and best dosing frequency of gemtuzumab ozogamicin when given in combination with granulocyte colony stimulating factor (G-CSF), cladribine, cytarabine and mitoxantrone (GCLAM) and to see how well they work in treating participants with acute myeloid leukemia or high-grade myeloid tumors (neoplasms) that have not been previously treated. Antibody-drug conjugates, such as gemtuzumab ozogamicin, act by directly delivering toxic chemotherapy to cancer cells. Granulocyte colony stimulating factor is a growth factor used to stimulate leukemia cells and render them more sensitive to chemotherapy drugs. Drugs used in chemotherapy, such as cladribine, cytarabine and mitoxantrone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving gemtuzumab ozogamicin in combination with G-CSF, cladribine, cytarabine and mitoxantrone hydrochloride may work better in treating participants with acute myeloid leukemia or high-grade myeloid neoplasm.
The purpose of this observational study is to provide data on the incidence and severity of infusion-related reactions during and immediately following each infusion of VYXEOS during the first induction.
This study is a non-interventional, specimen collection translational study to evaluate vitamin C levels in the peripheral blood of Acute Myeloid Leukemia (AML), Myelodysplastic Syndrome (MDS), or Chronic Myelomonocytic Leukemia (CMML) patients.
This research study is studying a targeted therapy drug as a possible treatment for IDH2 mutant acute myeloid leukemia or chronic myelomonocytic leukemia while undergoing hematopoietic stem cell transplantation. The drug involved in this study is: -Enasidenib.
The purpose of this study was to confirm the preliminary evidence from early clinical trials that midostaurin may provide clinical benefit not only to AML patients with the FLT3-mutations but also in FLT3-MN (SR<0.05) AML (FLT3 mutant to wild type signal ratio below the 0.05 clinical cut-off). This study evaluated the efficacy and safety of midostaurin in combination with daunorubicin or idarubicin and cytarabine for induction and intermediate-dose cytarabine for consolidation, and midostaurin single agent post-consolidation therapy in newly diagnosed patients with FLT3-MN (SR<0.05) AML.
Observational medical record review of newly diagnosed CML-CP participants in China
Myelodysplastic Syndrome (MDS) is a group of blood disorders where the bone marrow does not produce enough mature red blood cells, white blood cells and platelets. In a healthy person, the bone marrow makes blood stem cells (immature cells, also called 'blasts') that become mature blood cells over time. In people with MDS, this process is affected and immature blood cells in the bone marrow do not mature fully to become healthy blood cells. This causes a lack of healthy blood cells that can function properly. With fewer healthy blood cells, infection, anaemia, or easy bleeding may occur. MDS can progress to acute myeloid leukaemia in 25-30% of patients, and if untreated it can be rapidly fatal. The purpose of this study is to evaluate the standard treatment, azacitidine (Vidaza) given as an injection under the skin compared to the same medication (called CC-486) taken as a tablet by mouth. Vidaza is approved by the Australian Therapeutics Goods Administration (TGA) as standard treatment for MDS. CC-486 is an experimental treatment. This means it is not an approved treatment for MDS in Australia. CC-486 is being developed to increase convenience and make it easier for patients to continue their treatment. So far it has been given to over 870 patients in studies across the world. The treatment in the injection and the tablet is the same. Studies like this one are being done to ensure the tablet works in the same way as the standard injected treatment. Vidaza is given by subcutaneous injection (ie under the skin) over an hour for 7 days every 4 weeks for as long as it continues to work. All study participants will receive active treatment (there is no placebo), and all participants will receive the standard injection for six treatment cycles followed by the new tablet medication taken once daily for 21 days every 4 weeks. This allows the researchers to compare the two ways of giving the medicine.
Purpose: The purpose of this trial is to investigate whether a microfluidics assay can detect trace amounts of residual leukemia and predict relapse in acute myeloid leukemia (AML) patients in remission who have undergone allogeneic stem cell transplantation (SCT) or Induction and Consolidation Chemotherapy (ICC) at the North Carolina Cancer Hospital (NCCH). Procedures (methods): A total of 40 eligible subjects will be treated per standard of care with either SCT or induction and consolidation chemotherapy (ICC) based on the appropriate AML treatment paradigm for their disease. Peripheral blood (10 ml) for microfluidic chip analysis and possible Immune Monitoring Core Facility analysis will be collected along with routine lab draws prior to SCT. Patients in remission after SCT or those with confirmed remission by bone marrow biopsy after induction chemotherapy will be followed for 1 year; and peripheral blood (20 ml) will be collected to assess MRD by standard methods or by microfluidic chip analysis on a monthly basis. In addition, bone marrow biopsies will be performed at the end of consolidation (typically 5 months from remission), and at 1-year post remission in non-transplant patients. In transplanted patients, bone marrow biopsies will be collected at + 30 days, + 90 days, +180 days, and +360 days after SCT.