View clinical trials related to Leukemia, Lymphoid.
Filter by:This phase II trial is studying the side effects and best dose of alemtuzumab when given together with fludarabine phosphate and total-body irradiation followed by cyclosporine and mycophenolate mofetil in treating patients who are undergoing a donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, a monoclonal antibody, such as alemtuzumab, and radiation therapy before a donor stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
The purpose of this study is to find answers to the following questions: - What is the largest dose of AQ4N that can be given safely one time every three weeks for 24 weeks? - What are the side effects of AQ4N when given according to this schedule? - How much AQ4N is in the blood at certain times after administration and how does the body get rid of the drug? - Will AQ4N help treat lymphoid cancer?
RATIONALE: Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage cancer cells. Giving combination chemotherapy together with radiation therapy may kill more cancer cells. PURPOSE: This clinical trial is studying how well giving chemotherapy together with radiation therapy works in treating patients with acute lymphoblastic leukemia that has relapsed in the CNS and/or testes.
RATIONALE: Giving chemotherapy and total-body irradiation before a donor bone marrow transplant or peripheral blood stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine after transplant may stop this from happening. PURPOSE: This randomized clinical trial is studying how well giving antithymocyte globulin together with cyclosporine works in preventing graft-versus-host disease in patients who are undergoing chemotherapy with or without radiation therapy followed by donor stem cell transplant for acute lymphoblastic leukemia or acute myeloid leukemia.
This randomized phase III trial is studying total-body irradiation (TBI) and fludarabine phosphate to see how it works compared with TBI alone followed by donor stem cell transplant in treating patients with hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and radiation therapy before a donor stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after transplant may stop this from happening. It is not yet known whether TBI followed by donor stem cell transplant is more effective with or without fludarabine phosphate in treating hematologic cancer.
Chromosomal analysis or the study of genetic differences in patients previously untreated with AML, ALL, MDS or MM may be helpful in the diagnosis and classification of disease. It may also improve the ability to predict the course of disease and the selection of therapy. Institutions must have either an Alliance-approved cytogeneticist or an agreement from an Alliance-approved main member cytogenetics laboratory to enroll a patient on CALGB 8461. The Alliance Approved Institutional Cytogeneticists list is posted on the Alliance for Clinical Trials in Oncology website.
The purpose of this study is to test the safety of Iodine-131 Anti-B1 Antibody, to see what effects it has on patients with CLL and to determine the highest dose of Iodine-131 Anti-B1 Antibody that can be given without causing severe side effects.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. It is not yet known which chlorambucil regimen is more effective in treating advanced chronic lymphocytic leukemia. PURPOSE: Randomized phase III trial to determine the effectiveness of different regimens of chlorambucil in treating patients who have advanced chronic lymphocytic leukemia.
RATIONALE: Monoclonal antibodies can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. PURPOSE: Phase I trial to study the effectiveness of monoclonal antibody therapy in treating patients who have recurrent acute lymphoblastic leukemia or non-Hodgkin's lymphoma.
This research trial studies molecular genetic features in blood and tissue samples from patients with newly diagnosed acute lymphoblastic leukemia or acute promyelocytic leukemia. Studying samples of blood and tissue from patients with acute lymphoblastic leukemia or acute promyelocytic leukemia in the laboratory may help doctors identify and learn more about biomarkers related to cancer.