Clinical Trials Logo

Clinical Trial Summary

The frequency-following response (FFR), a scalp-recorded neurophonic potential, is a widely used metric of speech encoding integrity in healthy and clinical human populations. The translational potential of the FFR as a biomarker is constrained by poor understanding of its neural generators and influencing factors. This study leverages a cross-species and cross-level approach to provide mechanistic insight into the properties of the cortical source of the FFR, and elucidate the role of cortical feedback via cortico-collicular projections on modulation of the FFR as a function of stimulus context, arousal state, and category relevance. This clinical trial will focus on the influences of category relevance, predictability, and participant arousal state on the FFRs in neurotypical human participants.


Clinical Trial Description

Participants will listen to a variety of sounds while the frequency-following response (FFR) is recorded. The FFR is a sound-evoked response that mirrors the acoustic properties of the incoming acoustic signal with remarkable fidelity. The FFR is now recognized as an integrated response resulting from an interplay of early auditory subcortical and cortical systems. The cortical dynamics underlying the FFR are unclear. All stimuli will be normalized to the same root mean squared amplitude and stimulus duration and played at the same in-the-ear intensity. Thirty-two stimuli from human and animal natural productions with a wide-range of F0 will be used to elicit the FFR. At least 1000 artifact-free trials will be collected for every stimulus. Participants will sit in a quiet room (patients) or a sound-treated booth and listen to sounds while electroencephalography (EEG) and pupillometry signals are continuously acquired. EEG signals will be collected using Ag-AgCl scalp electrodes, with the active electrode placed at the central zero (Cz) point, the reference at the right mastoid, and the ground at the left mastoid. Contact impedence will be< 5 kΩ for all electrodes for all recording sessions, and responses will be recorded at a sampling rate of 25 kHz using Brain Vision PyCorder 1.0.7 (Brain Products, Gilching, Germany). Alternating polarities of the stimuli will be binaurally presented in sound field (identical to the animal protocols), with an inter-stimulus interval jittered between 122 to 148ms. Participants will be instructed to stay awake and refrain from making extraneous movements. EEG and pupil measures will allow continuous monitoring of participant state. The order of blocks will be counterbalanced across participants, and stimulus presentation will be controlled by E-Prime 2.0.10 software. The electrophysiological data will be preprocessed with BrainVision Analyzer 2.0 (Brain Products, Gilching, Germany), bandpass filtered (varies based on stimulus F0; 12 dB/octave, zero phase-shift). The bandpass filter will approximately reflect the lower and upper limits of phase-locking along the auditory pathway that contributes to the FFR (auditory cortex, midbrain). Responses will be segmented into epochs, baseline corrected to the mean voltage of the noise floor(-40 to 0ms). Epochs in which the amplitude exceeds ± 35μV will be considered artifacts and rejected. In each session, a preset number of artifact-free FFR trials (500 for each polarity) will be obtained. For pupillometry, participants will be seated in a chair and will place their head on a chin rest. The stabilized mount also has a small horizontal bar that they can place their forehead against. To calibrate the eye tracker, participants will be asked to follow 9 dots that appear on a monitor with their eyes. Insert earbuds will be placed in both ears, and auditory stimuli will be presented binaurally. Pupillometry data will be preprocessed to remove noise from the analysis. The pupil data will be downsampled to 50 Hz. Trials with more than 15% of the samples detected as blinks will be removed. Missing samples due to blinks will be linearly interpolated from approximately100 ms prior to and 100 ms after the blink. Pupil responses will be baseline normalized using the average pupil size in the 500-1000 ms prior to the onset of the auditory stimuli. A key variable reported will be the percent change in pupil size. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05010473
Study type Interventional
Source Northwestern University
Contact
Status Enrolling by invitation
Phase N/A
Start date January 20, 2022
Completion date January 20, 2026

See also
  Status Clinical Trial Phase
Completed NCT06038903 - The Turkish Version Of The Brief-Caffeine Expectancy Questionnaire
Completed NCT02267265 - Pilot Study of Novel Postpartum Educational Video Intervention N/A
Completed NCT04509024 - Incidental Auditory Category Training for Language Learning N/A
Completed NCT04526041 - Language and Music, Speech and the Human Beatbox: Theoretical Issues for Research in General and Applied Linguistics N/A
Completed NCT05272397 - Language & Cognitive Control N/A
Completed NCT03168373 - Effect of Intensive Language Therapy in Subacute Stroke Patients N/A
Completed NCT04125680 - English as a Second Language Health Literacy Program N/A
Completed NCT02840396 - Effect of rTMS of the Dorsolateral Prefrontal Cortex on Language Production in Healthy Participants N/A
Completed NCT03461640 - Community Based Doulas for Migrant Women in Labour and Birth in Sweden - a Randomised Controlled Trial N/A
Completed NCT02812017 - Thirty Million Words- Well Baby Initiative N/A
Active, not recruiting NCT02799017 - Phonological Treatment Paired With Intensive Speech Therapy Promotes Reading Recovery in Chronic Aphasia N/A
Completed NCT01331057 - Bilingualism: Validation Of "Avicenne's Elal"
Completed NCT02871973 - Primary Care-based Program to Enhance Positive Parenting Practices N/A
Completed NCT04595552 - Language Development in Cochlear Implant Children N/A
Recruiting NCT04965480 - Detecting Delayed Discharge in Acute Geriatric Unit Using Natural Language Processing
Enrolling by invitation NCT02801864 - tDCS as an Adjuvant to Intensive Speech Therapy for Chronic Post Stroke Aphasia N/A
Recruiting NCT04295980 - Mechanism of Aphasia and Recovery of Language After the Injury of Geschwind's Territory: a Study Based on the Brain Network Analysis
Completed NCT02807831 - A Randomized Clinical Trial Comparing Executive Function and Language Skills Training on School Readiness in Preschool Children N/A
Recruiting NCT06178276 - Investigation of Neurophysiological Functioning During Oral Comprehension Task
Enrolling by invitation NCT05214092 - Cortical Contributions to FFR: Post-Op Outcomes N/A