Clinical Trials Logo

Knee Impairment clinical trials

View clinical trials related to Knee Impairment.

Filter by:
  • None
  • Page 1

NCT ID: NCT04635436 Recruiting - Multiple Sclerosis Clinical Trials

Efficacy of Split Gait in the Treatment of Dynamic Asymmetries in Subjects With Pathologic Claudication

ESPLICA
Start date: February 5, 2020
Phase:
Study type: Observational

Walking on a split-belt treadmill (each of the two belts running at a different speed) imposes an asymmetrical gait, mimicking limping that has been observed in various pathologic conditions. This walking modality has been proposed as an experimental paradigm to investigate the flexibility of the neural control of gait and as a form of therapeutic exercise for hemi-paretic patients. However, the scarcity of dynamic investigations both for segmental aspects and for the entire body system, represented by the centre of mass, challenges the validity of the available findings on split gait. Compared with overground gait in hemiplegia, split gait entails an opposite spatial and dynamic asymmetry. The faster leg mimics the paretic limb temporally, but the unimpaired limb from the spatial and dynamic point of view. These differences suggest that a partial shift in perspective may help to clarify the potential of the split gait as a rehabilitation tool. The aim of the present study is to investigate the dynamic asymmetries of lower limbs in adults with unilateral motor impairments (e.g. hemiplegia post-stroke, Parkinson's disease, multiple sclerosis, unilateral amputation, surgical orthopedic interventions) during adaptation to gait on a split-belt treadmill. The sagittal power provided by the ankle and the total mechanical energy of the centre of mass will be thoroughly studied. The time course of phenomena both during gait when the belts are running at different speed and when the belts are set back to the same speed (i.e. the after-effect) will be investigated. A greater dynamic symmetry between the lower limbs is expected after split gait. The question whether this symmetry will occur when the pathological limb is on the faster or the lower belt will be disclosed. Some alterations of the motion of the centre of mass during split gait are also expected.

NCT ID: NCT04607174 Recruiting - Multiple Sclerosis Clinical Trials

Voluntary Activation During Isokinetic Contractions in Subjects With Neuromotor Disorders

ATTILA
Start date: October 7, 2020
Phase: N/A
Study type: Interventional

Activation is the amount of voluntary recruitment of a muscle during voluntary contraction. Full activation implies the recruitment of all muscle fibres at their tetanic frequency. In healthy subjects, and even in sports performances, full activation may be rarely achieved despite a subjectively maximal effort. Highly decreased activation has been observed in patients affected by various orthopaedic and neurological disorders. In these subjects, paresis may be caused or aggravated by primitive impairments of the central nervous system and/or, by stimuli arising from peripheral damaged tissues that inhibit the corticospinal or the intraspinal recruitment of motoneurones ("arthrogenous muscle weakness"). There are numerous investigations in the literature on activation measured during isometric contractions, while they are substantially missing as far as isokinetic concentric contractions are concerned. There are reasons to suppose that, contrary to what has been demonstrated for healthy subjects, in patients with various motor impairments the activation is diminished the more, the higher is the joint rotation speed. The present study aims to investigate the amount of activation of the quadriceps femoris during subjectively maximal isometric contractions at 40° knee flexion (0°=complete extension) and isokinetic concentric contractions at an angular velocity of 100°/s in patients with various orthopaedic and neurologic conditions. Activation will be measured on an isokinetic dynamometer, through the "interpolated twitch technique". This consists of stimulating a representative sample of the muscle belly through an electric shock. If the shock does not generate an extra force during contraction, all muscle fibres belonging to the sample reached by the electric shock can be claimed to be recruited at their tetanic frequency. Otherwise, following the stimulus, a twitch can be observed revealing submaximal voluntary recruitment of the muscle.