Clinical Trials Logo

IVM clinical trials

View clinical trials related to IVM.

Filter by:

NCT ID: NCT06369415 Recruiting - Infertility Clinical Trials

Health of Babies Born From IVF Versus IVM at 5 Years Old

FM-BABIES-5Y
Start date: April 16, 2024
Phase:
Study type: Observational

The investigators conduct a long-term follow-up at five years on offspring born from our randomized controlled trial (RCT) to investigate whether or not there is any difference in developmental outcomes in children born after capacitation IVM (CAPA IVM) compared with conventional IVF in order to give strong evidence about the safety of IVM in women with high antral follicle count.

NCT ID: NCT06087354 Completed - IVM Clinical Trials

Low vs. Air Oxygen Concentration CAPA-IVM Culture of Cumulus-oocyte Complexes

Start date: November 9, 2023
Phase: N/A
Study type: Interventional

IVM with a pre-maturation step, known as capacitation IVM (CAPA-IVM), has demonstrated enhanced maturation of human oocytes in vitro and successful live births. However, CAPA-IVM has shown lower rates of embryo formation when compared to conventional in vitro fertilization/ intra cytoplasmic sperm injection (IVF/ICSI) cycles. To optimize the CAPA-IVM culture system, this pilot study aims to evaluate the impact of low oxygen versus air oxygen concentrations on embryological outcomes in PCOS patients.

NCT ID: NCT05793931 Terminated - PCOS Clinical Trials

A Pilot Study to Determine the Feasibility, Acceptance, and Effectiveness of In-vitro Maturation in Patients Without IVF Coverage

IVM
Start date: November 16, 2021
Phase:
Study type: Observational

The specific aim of this pilot study is to test the hypothesis that estrogen stimulated IVM will be non-inferior to traditional IVF, to determine the feasibility and acceptance of estrogen-stimulated in vitro maturation (IVM) among couples and if couples find value and satisfaction with IVM. This project will determine the feasibility, acceptance, and cost-benefit of in vitro maturation (IVM) among 20 couples who have had unsuccessful attempts at pregnancy using oral medications or whose only option to achieve pregnancy is through in vitro fertilization (IVF) due to blocked fallopian tubes or low sperm counts.

NCT ID: NCT04774432 Recruiting - IVF Clinical Trials

Effect of GM-CSF on CAPA-IVM System Success Rates in PCOS

Start date: March 10, 2021
Phase: N/A
Study type: Interventional

In-vitro maturation (IVM) of human oocytes obtained from minimally stimulated or unstimulated ovaries offers a more "patient friendly" treatment option than the conventional Assisted Reproductive Technology (ART) treatment with controlled ovarian hyperstimulation (COH). However, maturation rate and the total blastocyst yield in oocytes undergoing in vitro maturation are still limited. This pilot study aims to evaluate the addition of an important growth factor known as Granulocyte macrophage colony stimulating factor (GM-CSF). The investigators hypothesize that the addition of GM-CSF to human IVM culture media will increase pregnancy rates to comparable levels to that of IVF, making it a viable clinical option for couples undergoing assisted reproductive treatment.

NCT ID: NCT04562883 Completed - IVF Clinical Trials

Single vs. Group CAPA-IVM Culture of Cumulus-oocyte Complexes

Start date: October 1, 2020
Phase: N/A
Study type: Interventional

Oocyte in vitro maturation (IVM) is a minimal-stimulation ART with reduced hormone-related side effects and risks for the patients. However, the approach is not widely used because of an efficiency gap compared to conventional ART. In order to further optimize and adapt the CAPA-IVM system in the IVM clinic, this pilot study aims to check the feasibility of applying a single COC CAPA-IVM strategy versus the group COC culture CAPA-IVM

NCT ID: NCT04488211 Completed - IVM Clinical Trials

IVM Survey Among Reproductive Medicine Specialists

Start date: July 30, 2020
Phase:
Study type: Observational

Although IVM as a laboratory technology in reproductive medicine has existed for many decades, there is a lack of well-designed studies comparing the efficiency and the patient satisfaction related to IVM as compared to standard ovarian stimulation for IVF. In view of this, and in order to identify unmet needs of fertility specialists with regard to the application of IVM, the investigator developed the idea of a worldwide web-based survey analysis of fertility specialists' insights and experiences regarding IVM.

NCT ID: NCT04297553 Completed - PCOS Clinical Trials

Fresh Versus Freeze-only After CAPA IVM on PCOS Patients

Start date: March 6, 2020
Phase: N/A
Study type: Interventional

IVM (in vitro maturation) has been proved to be a more friendly treatment protocol for PCOS (polycystic ovary syndrome) patients compared with conventional controlled ovarian stimulation, with less complications (especially ovarian hyperstimulation syndrome), shorter treatment duration, lower cost, and acceptable pregnancy outcomes.

NCT ID: NCT04296357 Completed - Infertility Clinical Trials

Health of IVF Versus IVM Children (FM-BABIES)

FM-BABIES
Start date: March 1, 2020
Phase:
Study type: Observational

The investigators conduct a follow up of our randomized controlled trial (RCT) to investigate the development of children born from In-vitro fertilization (IVF) and In-vitro maturation (IVM), in order to give strong evidence about the safety of IVM in women with high antral follicle count or especially polycystic ovary syndrome (PCOS).

NCT ID: NCT04048486 Completed - IVF Clinical Trials

Children Born From IVM-CAPA vs IVF or Natural Conception

Start date: August 7, 2019
Phase:
Study type: Observational

CAPA-IVM is a new promising IVM technique involving the use of a new compound to facilitate the oocyte and embryo competence. CAPA-IVM preserved the maintenance of trans-zonal projections and significantly improved maturation rate and blastocyst yield. NGS analysis of 20 good quality CAPA-IVM blastocysts did not reveal increased aneuploidy compared to age-matched routine ICSI patients. The first CAPA-IVM baby was born in 2017 at My Duc Hospital, Vietnam and up to now, there are 33 babies born from this technique. There is no study to investigate the development of babies born from CAPA-IVM.

NCT ID: NCT03915054 Completed - PCOS Clinical Trials

Amphiregulin Versus Non-Amphiregulin Supplementation to Maturation Culturing Medium in IVM.

Start date: April 17, 2019
Phase: N/A
Study type: Interventional

Clinical use of IVM was pioneered in the nineties, but has not yet become a realistic option for wide-scale practice, for several reasons. Fundamentally, despite recent progress in improving the implantation and the pregnancy rates using in-vitro matured oocytes, results of IVM remain lower than treatment cycles utilizing conventional ART. To improve the outcome of IVM cycles, this study focuses on improving in-vitro culture conditions. In-vitro maturation (IVM) of human oocytes obtained from minimally stimulated or unstimulated ovaries offers a more "patient friendly" treatment option than the conventional Assisted Reproductive Technology (ART) treatment with controlled ovarian hyperstimulation (COH). Typically, IVM will be offered to women with polycystic ovaries (PCO/PCOS), or to patients with an excellent ovarian reserve, i.e. a high antral follicle count. IVM treatment is characterized by minimal administration of FSH or hMG and NO hCG trigger. The IVM approach is less disruptive to patients' daily life through the reduced need for hormonal and ultrasound monitoring, avoids a range of minor and major complications, such as ovarian hyperstimulation syndrome, and aims to reduce the total cost of infertility treatment for the patient and for the health care budget. Human oocytes retrieved from small antral follicles are able to resume meiosis by undergoing germinal vesicle breakdown and extrusion of the first polar body, if oocytes have reached meiotic competence. These oocytes can be fertilized although only a proportion (less than 50%) of them can develop further into viable embryos. It has been hypothesized that failure of embryonic development may, at least in part, be due to an immature oocyte cytoplasm. A novel human in vitro maturation (IVM) culture system (named CAPACITATION-IVM is being investigated, hereafter named "CAPA") using 1°) natural compounds known to influence cAMP levels within the cumulus-oocyte-complex and 2°) compounds that are crucial for the oocyte-cumulus cross-talk. Keeping cyclic AMP high after retrieval in the GV oocyte prevents the occurrence of nuclear maturation, enabling increased communication between the oocyte and the cumulus cells. This allows for the improvement in the synchronization of nuclear and cytoplasmic maturation processes in the oocyte, to the benefit of embryo quality.