Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT06107933
Other study ID # 23-0314
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date October 1, 2023
Est. completion date January 1, 2026

Study information

Verified date October 2023
Source University of Colorado, Boulder
Contact Tanya L Alderete, PhD
Phone 303-735-6249
Email tanya.alderete@colorado.edu
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

The goal of this observational study is to characterize and evaluate micro- and nano-plastic (MNP) exposures among mothers and infants in mother-infant dyads one-month postpartum living in Denver and Boulder, Colorado. The main questions it aims to answer are: - What MNPs are present in breastmilk and maternal blood samples and in their infants stool sample? - Are there associations between amount of maternal MNPs in breast milk and mass of MNP particles in infant stool? - Which environmental and lifestyle factors are most predictive of maternal MNP burden? - Is infant exposure to MNPs associated with birth weight and postnatal growth trajectories? Participants will: - Complete several questionnaires assessing medical histories, lifestyle factors, environmental exposures, eating behaviors, etc. - Provide biological specimens including: maternal blood, stool, and breastmilk; infant stool - Clinical visit to have anthropometric measures documented including maternal height and weight, infant weight, length, and skin-fold thickness


Description:

The proposed pilot study will establish a new cohort of healthy, lactating women from urban Denver (n = 10) and Boulder (n = 10), Colorado. By recruiting women from these two regions, the investigators will be able to ensure that our pilot study covers a diverse geographical range with varying levels of air pollution exposure and social determinants of health (SDoH). Study participants will be 1-month postpartum (+/- 2 weeks) and report exclusive breastfeeding. The investigators will also biobank maternal stool samples for future funding applications that will additionally examine the gut microbiome and fecal metabolome. Height, Weight, Blood Pressure, and other Anthropometric Measures: Maternal height and weight will be measured using a calibrated medical scale and a commercial stadiometer. Infant weight will be measured in duplicate on a digital scale accurate to the nearest 10 g and length will be measured in duplicate to the nearest 0.1 cm using an Infantometer and the standardized World Health Organization (WHO) approach. Infant skinfold thickness will be measured at four sites with Holtain skinfold callipers. Maternal weight will be recorded to the nearest 0.1 kg and height will be recorded to the nearest 0.1 cm. Automated blood pressure using appropriate cuffs will be used to obtain three readings of blood pressure, from which the average value will be recorded, per recommendations of the American Heart Association. Assessment of Food Intake & Physical Activity: Dietary data will be collected using the National Cancer Institute (NCI) National Health and Nutritional Examination Survey (NHANES) Food Frequency Questionnaire. The questionnaire is designed to capture information about food intake over the prior month, and includes questions outlining consumption of fruits, vegetables, dairy products, whole grain and fiber, sugar, and red and processed meats. The questionnaire will be administered on the web with a research assistant nearby to assist with any questions. Given the investigators are interested in microplastics exposure from food, additional dietary data will be collected through the administration of Nutrition Data System for Research (NDSR) 24-hour dietary recalls which will be administered over the phone by a registered dietician or study staff under the direct supervision of a registered dietician. The investigators will ask mothers to complete 3 dietary recalls for themselves and 3 for their infant, for ideally 2 weekdays and a weekend. One dietary recall for both mother and infant will be completed during the Clinical Visit at the Clinical Translational Research Center (CTRC). Research assistants will work together with participants to establish which days are best suited for them to complete subsequent recalls. Finally, to assess the quantity of milk consumed by infants during a single feeding, the investigators will weigh the infants at the study visit before feeding. Then mothers will be asked to breastfeed their infant. Upon completion of feeding, the investigators will re-weigh the infants to roughly capture the amount of milk consumed. Maternal and Infant Fecal Samples: Fecal collection kits will be given to eligible participants. To avoid plastic contamination, maternal fecal collection kits will include an absorbent pad covering any plastic on the stool collection hat, gloves, a metal spoon, and glass container. For the infant stool collection, mothers will be provided with a diaper, bee's wrap & cloth, and all collection supplies that are free of plastic. The investigators will deliver these collection supplies and instructions to participants prior to their visit so that they may collect these sample at home. The investigators will ask them to take the samples within 24 hours of the visit time to preserve the microbial composition of the stool samples. The instructions will specify that samples should be stored in the refrigerator until their visit. The investigators will provide a cooler for participants to transport the samples to the CTRC. If for any reason, participants were not able to obtain these samples at home, they will be allowed to collect them during the visit, If collected at the clinical visit, maternal and infant stool samples will be transferred into 3-4 glass vials and stored in a -4°C fridge for 24 hours prior to being stored at -80°C for MNP and gut microbiome sequencing. Fecal collection tubes utilize a fecal preservative, which prevents changes to aerobic and anaerobic bacteria that can occur during shipment. Fecal sequencing will be performed at Emory University (Dr. Doug Walker). Only de-identified samples will be sent to Dr. Walker's lab. DNA will be sequenced on the Illumina HiSeq 4000 platform. Microbial composition profiles will be predicted using MetaPhlan. Samples will be functionally mapped using HUMAnN2 to obtain abundance level of gene families from the UniProt Reference Clusters that will be further mapped to MetaCyc metabolic pathways database. Genes will be grouped in clusters of orthologous groups from EggNOG data. Gene family abundances will be grouped into broader functional categories based on annotation for the UniProt gene ontology. For the metabolomics analysis, fecal samples will be analyzed using ultra-performance liquid chromatography (UPLC) and high resolution/tandem mass spectrometry (MS/MS) by Metabolon. Compounds of exogenous, human, and microbial origin will be identified by comparison to library entries of purified standards or recurrent unknown entities. Metabolon maintains a reference library of more than 4,500 known metabolites and more than 9,000 novel metabolites. Biochemical identifications will be based on three criteria: retention index, accurate mass match to the library +/- 10 ppm, and the MS/MS forward and reverse scores between the experimental data and authentic standards. Breast Milk Expression: Due to potential exposures from feeding breast milk from plastic bottles, all mothers will be asked to only feed their infants from the breast for 7 days prior to infant stool collection. Similar to the stool collection supplies, the investigators will provide mothers with a Haakaa Silicone Breast Pump, silicone storage container with cap, and instructions prior to the study visit. Mothers will be asked to provide a full expression of a single breast. If mothers are uncomfortable providing a full expression, study coordinators will work with mothers to determine an amount appropriate for collection. The investigators will collect a minimum of roughly 4g of breast milk. If mothers are unable to collect their breastmilk sample before the visit, they will be provided with a quiet, private CTRC study room where they will pump breast milk using a Haakaa Silicone Breast Pump into a silicone storage container. Following collection, a member of our study team will aliquot measures into glass sterile tubes for storage. Following collection, all samples will be stored at -80 degrees C prior to processing and analysis. Blood Draw: Blood draws will be collected (50mL) for microplastics analysis. Blood will be collected using a stainless steel 21G needle that is connected to a glass container under vacuum, so blood drawn directly from participant is deposited in the glass vacutainer. Glass vacutainers will have a rubber seal for storage.


Recruitment information / eligibility

Status Recruiting
Enrollment 40
Est. completion date January 1, 2026
Est. primary completion date January 1, 2025
Accepts healthy volunteers Accepts Healthy Volunteers
Gender Female
Age group 18 Years and older
Eligibility Inclusion Criteria: - All gender expressions - Mothers at 1-month postpartum (± 2 weeks) - Intent to exclusively breastfeed for = 6 months - Nulliparous and singleton births Exclusion Criteria: - Physical, mental, or cognitive disability that prevents participation; current incarceration - Chronic conditions in mother and/or infant (e.g., heart disease, cancer, autoimmune disease, diabetes, intestinal bowel syndrome/disease), conditions diagnosed for the first time during pregnancy (e.g. gestational diabetes), neurological conditions in mother and/or infant (e.g. epilepsy, seizures), psychological conditions in mother and/or infant (e.g. bipolar disorder), or neurological/psychological conditions diagnosed in mother during or immediately after pregnancy (e.g. postpartum depression) - Previously diagnosed with any major illness (e.g., intrauterine growth restriction, birth asphyxia, cancer) or eating disorder or previous gastric band surgery - Antibiotic use during pregnancy or within 1 month of delivery, smoking, drug use, or alcohol abuse - Living outside the study region during the pregnancy or postpartum period - Use of plastic storage bags to store breastmilk - Center for Epidemiology Studies Depression (CESD)-10 score greater than or equal to 10 indicating clinically relevant symptoms of depression (=10) - Infants who are intersex

Study Design


Related Conditions & MeSH terms


Intervention

Other:
Observational only
Observational only

Locations

Country Name City State
United States Clinical Translational Research Center CU Boulder Boulder Colorado

Sponsors (3)

Lead Sponsor Collaborator
University of Colorado, Boulder Emory University, Sonoma Technology, Inc.

Country where clinical trial is conducted

United States, 

References & Publications (106)

Abbasi S, Keshavarzi B, Moore F, Turner A, Kelly FJ, Dominguez AO, Jaafarzadeh N. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ Pollut. 2019 Jan;244:153-164. doi: 10.1016/j.envpol.2018.10.039. Epub 2018 Oct 10. — View Citation

Allen S, Allen D, Phoenix VR, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci. 2019;12(5):339-344. doi:10.1038/s41561-019-0335-5

Ambrosini R, Azzoni RS, Pittino F, Diolaiuti G, Franzetti A, Parolini M. First evidence of microplastic contamination in the supraglacial debris of an alpine glacier. Environ Pollut. 2019 Oct;253:297-301. doi: 10.1016/j.envpol.2019.07.005. Epub 2019 Jul 9. — View Citation

Amtmann D, Kim J, Chung H, Bamer AM, Askew RL, Wu S, Cook KF, Johnson KL. Comparing CESD-10, PHQ-9, and PROMIS depression instruments in individuals with multiple sclerosis. Rehabil Psychol. 2014 May;59(2):220-229. doi: 10.1037/a0035919. Epub 2014 Mar 24. — View Citation

Anderson AG, Grose J, Pahl S, Thompson RC, Wyles KJ. Microplastics in personal care products: Exploring perceptions of environmentalists, beauticians and students. Mar Pollut Bull. 2016 Dec 15;113(1-2):454-460. doi: 10.1016/j.marpolbul.2016.10.048. Epub 2016 Nov 8. — View Citation

Andresen EM, Malmgren JA, Carter WB, Patrick DL. Screening for depression in well older adults: evaluation of a short form of the CES-D (Center for Epidemiologic Studies Depression Scale). Am J Prev Med. 1994 Mar-Apr;10(2):77-84. — View Citation

Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol. 2021 Apr 13;12:643972. doi: 10.3389/fphar.2021.643972. eCollection 2021. — View Citation

Biagi E, Musella M, Palladino G, et al. Impact of Plastic Debris on the Gut Microbiota of Caretta caretta From Northwestern Adriatic Sea. Front Mar Sci. 2021;8:637030. doi:10.3389/fmars.2021.637030

Cai J, Zang X, Wu Z, Liu J, Wang D. Translocation of transition metal oxide nanoparticles to breast milk and offspring: The necessity of bridging mother-offspring-integration toxicological assessments. Environ Int. 2019 Dec;133(Pt A):105153. doi: 10.1016/j.envint.2019.105153. Epub 2019 Sep 11. — View Citation

Cai L, Wang J, Peng J, Tan Z, Zhan Z, Tan X, Chen Q. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environ Sci Pollut Res Int. 2017 Nov;24(32):24928-24935. doi: 10.1007/s11356-017-0116-x. Epub 2017 Sep 16. Erratum In: Environ Sci Pollut Res Int. 2019 Dec;26(35):36074-36075. — View Citation

Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int J Environ Res Public Health. 2020 Feb 13;17(4):1212. doi: 10.3390/ijerph17041212. — View Citation

Chambers ES, Preston T, Frost G, Morrison DJ. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr Nutr Rep. 2018 Dec;7(4):198-206. doi: 10.1007/s13668-018-0248-8. — View Citation

Chao HH, Guo CH, Huang CB, Chen PC, Li HC, Hsiung DY, Chou YK. Arsenic, cadmium, lead, and aluminium concentrations in human milk at early stages of lactation. Pediatr Neonatol. 2014 Apr;55(2):127-34. doi: 10.1016/j.pedneo.2013.08.005. Epub 2013 Nov 11. — View Citation

Chen G, Feng Q, Wang J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ. 2020 Feb 10;703:135504. doi: 10.1016/j.scitotenv.2019.135504. Epub 2019 Nov 13. — View Citation

Cheung PK, Fok L. Evidence of microbeads from personal care product contaminating the sea. Mar Pollut Bull. 2016 Aug 15;109(1):582-585. doi: 10.1016/j.marpolbul.2016.05.046. Epub 2016 May 27. — View Citation

Chumpitazi B, Nurko S. Pediatric gastrointestinal motility disorders: challenges and a clinical update. Gastroenterol Hepatol (N Y). 2008 Feb;4(2):140-8. — View Citation

Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012 Mar 16;148(6):1258-70. doi: 10.1016/j.cell.2012.01.035. — View Citation

Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE. Human Consumption of Microplastics. Environ Sci Technol. 2019 Jun 18;53(12):7068-7074. doi: 10.1021/acs.est.9b01517. Epub 2019 Jun 5. Erratum In: Environ Sci Technol. 2020 Sep 1;54(17):10974. — View Citation

Danopoulos E, Twiddy M, West R, Rotchell JM. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J Hazard Mater. 2022 Apr 5;427:127861. doi: 10.1016/j.jhazmat.2021.127861. Epub 2021 Nov 24. — View Citation

de la Cuesta-Zuluaga J, Mueller NT, Alvarez-Quintero R, Velasquez-Mejia EP, Sierra JA, Corrales-Agudelo V, Carmona JA, Abad JM, Escobar JS. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients. 2018 Dec 27;11(1):51. doi: 10.3390/nu11010051. — View Citation

Defois C, Ratel J, Garrait G, Denis S, Le Goff O, Talvas J, Mosoni P, Engel E, Peyret P. Food Chemicals Disrupt Human Gut Microbiota Activity And Impact Intestinal Homeostasis As Revealed By In Vitro Systems. Sci Rep. 2018 Jul 20;8(1):11006. doi: 10.1038/s41598-018-29376-9. — View Citation

Dehghani S, Moore F, Akhbarizadeh R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ Sci Pollut Res Int. 2017 Sep;24(25):20360-20371. doi: 10.1007/s11356-017-9674-1. Epub 2017 Jul 13. — View Citation

Deng L, Li G, Peng S, Wu J, Che Y. Microplastics in personal care products: Exploring public intention of usage by extending the theory of planned behaviour. Sci Total Environ. 2022 Nov 20;848:157782. doi: 10.1016/j.scitotenv.2022.157782. Epub 2022 Aug 1. — View Citation

Dris R, Gasperi J, Saad M, Mirande C, Tassin B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar Pollut Bull. 2016 Mar 15;104(1-2):290-3. doi: 10.1016/j.marpolbul.2016.01.006. Epub 2016 Jan 17. — View Citation

Ferguson L, Taylor J, Davies M, Shrubsole C, Symonds P, Dimitroulopoulou S. Exposure to indoor air pollution across socio-economic groups in high-income countries: A scoping review of the literature and a modelling methodology. Environ Int. 2020 Oct;143:105748. doi: 10.1016/j.envint.2020.105748. Epub 2020 Jul 3. — View Citation

Fromme H, Gruber L, Seckin E, Raab U, Zimmermann S, Kiranoglu M, Schlummer M, Schwegler U, Smolic S, Volkel W; HBMnet. Phthalates and their metabolites in breast milk--results from the Bavarian Monitoring of Breast Milk (BAMBI). Environ Int. 2011 May;37(4):715-22. doi: 10.1016/j.envint.2011.02.008. — View Citation

Gasperi J, Wright SL, Dris R, et al. Microplastics in air: Are we breathing it in? Current Opinion in Environmental Science & Health. 2018;1:1-5. doi:10.1016/j.coesh.2017.10.002

Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017 Jul 19;3(7):e1700782. doi: 10.1126/sciadv.1700782. eCollection 2017 Jul. — View Citation

Hafezi SA, Abdel-Rahman WM. The Endocrine Disruptor Bisphenol A (BPA) Exerts a Wide Range of Effects in Carcinogenesis and Response to Therapy. Curr Mol Pharmacol. 2019;12(3):230-238. doi: 10.2174/1874467212666190306164507. — View Citation

Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater. 2018 Feb 15;344:179-199. doi: 10.1016/j.jhazmat.2017.10.014. Epub 2017 Oct 9. — View Citation

Han Y, Lian F, Xiao Z, Gu S, Cao X, Wang Z, Xing B. Potential toxicity of nanoplastics to fish and aquatic invertebrates: Current understanding, mechanistic interpretation, and meta-analysis. J Hazard Mater. 2022 Apr 5;427:127870. doi: 10.1016/j.jhazmat.2021.127870. Epub 2021 Nov 24. — View Citation

Henderson NB, Sears CG, Calafat A, et al. Associations of Breast Milk Consumption with Urinary Phthalate and Phenol Exposure Biomarkers in Infants. Environ Sci Technol Lett. 2020;7(10):733-739. doi:10.1021/acs.estlett.0c00450

Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients. 2019 Jul 16;11(7):1613. doi: 10.3390/nu11071613. — View Citation

Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Part Fibre Toxicol. 2020 Nov 12;17(1):57. doi: 10.1186/s12989-020-00387-7. — View Citation

Hwang J, Choi D, Han S, Choi J, Hong J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci Total Environ. 2019 Sep 20;684:657-669. doi: 10.1016/j.scitotenv.2019.05.071. Epub 2019 May 17. — View Citation

Ibrahim YS, Tuan Anuar S, Azmi AA, Wan Mohd Khalik WMA, Lehata S, Hamzah SR, Ismail D, Ma ZF, Dzulkarnaen A, Zakaria Z, Mustaffa N, Tuan Sharif SE, Lee YY. Detection of microplastics in human colectomy specimens. JGH Open. 2020 Nov 21;5(1):116-121. doi: 10.1002/jgh3.12457. eCollection 2021 Jan. — View Citation

Islam MM. Social Determinants of Health and Related Inequalities: Confusion and Implications. Front Public Health. 2019 Feb 8;7:11. doi: 10.3389/fpubh.2019.00011. eCollection 2019. No abstract available. — View Citation

Ivleva NP. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chem Rev. 2021 Oct 13;121(19):11886-11936. doi: 10.1021/acs.chemrev.1c00178. Epub 2021 Aug 26. — View Citation

Jadcherla SR, Duong HQ, Hofmann C, Hoffmann R, Shaker R. Characteristics of upper oesophageal sphincter and oesophageal body during maturation in healthy human neonates compared with adults. Neurogastroenterol Motil. 2005 Oct;17(5):663-70. doi: 10.1111/j.1365-2982.2005.00706.x. — View Citation

Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V, Sadofsky LR. Detection of microplastics in human lung tissue using muFTIR spectroscopy. Sci Total Environ. 2022 Jul 20;831:154907. doi: 10.1016/j.scitotenv.2022.154907. Epub 2022 Mar 29. — View Citation

Jian JM, Chen D, Han FJ, Guo Y, Zeng L, Lu X, Wang F. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs). Sci Total Environ. 2018 Sep 15;636:1058-1069. doi: 10.1016/j.scitotenv.2018.04.380. Epub 2018 May 3. — View Citation

Kannan K, Vimalkumar K. A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. Front Endocrinol (Lausanne). 2021 Aug 18;12:724989. doi: 10.3389/fendo.2021.724989. eCollection 2021. — View Citation

Klein M, Fischer EK. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci Total Environ. 2019 Oct 1;685:96-103. doi: 10.1016/j.scitotenv.2019.05.405. Epub 2019 May 29. — View Citation

Kwon JH, Kim JW, Pham TD, Tarafdar A, Hong S, Chun SH, Lee SH, Kang DY, Kim JY, Kim SB, Jung J. Microplastics in Food: A Review on Analytical Methods and Challenges. Int J Environ Res Public Health. 2020 Sep 15;17(18):6710. doi: 10.3390/ijerph17186710. — View Citation

LaKind JS, Naiman J, Verner MA, Leveque L, Fenton S. Per- and polyfluoroalkyl substances (PFAS) in breast milk and infant formula: A global issue. Environ Res. 2023 Feb 15;219:115042. doi: 10.1016/j.envres.2022.115042. Epub 2022 Dec 16. — View Citation

LaKind JS, Verner MA, Rogers RD, Goeden H, Naiman DQ, Marchitti SA, Lehmann GM, Hines EP, Fenton SE. Current Breast Milk PFAS Levels in the United States and Canada: After All This Time, Why Don't We Know More? Environ Health Perspect. 2022 Feb;130(2):25002. doi: 10.1289/EHP10359. Epub 2022 Feb 23. Erratum In: Environ Health Perspect. 2023 Mar;131(3):39001. — View Citation

Law KL, Starr N, Siegler TR, Jambeck JR, Mallos NJ, Leonard GH. The United States' contribution of plastic waste to land and ocean. Sci Adv. 2020 Oct 30;6(44):eabd0288. doi: 10.1126/sciadv.abd0288. Print 2020 Oct. — View Citation

Lear G, Kingsbury JM, Franchini S, Gambarini V, Maday SDM, Wallbank JA, Weaver L, Pantos O. Plastics and the microbiome: impacts and solutions. Environ Microbiome. 2021 Jan 20;16(1):2. doi: 10.1186/s40793-020-00371-w. — View Citation

Lei K, Qiao F, Liu Q, Wei Z, Qi H, Cui S, Yue X, Deng Y, An L. Microplastics releasing from personal care and cosmetic products in China. Mar Pollut Bull. 2017 Oct 15;123(1-2):122-126. doi: 10.1016/j.marpolbul.2017.09.016. Epub 2017 Sep 11. — View Citation

Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022 May;163:107199. doi: 10.1016/j.envint.2022.107199. Epub 2022 Mar 24. — View Citation

Lin H, An Y, Hao F, Wang Y, Tang H. Correlations of Fecal Metabonomic and Microbiomic Changes Induced by High-fat Diet in the Pre-Obesity State. Sci Rep. 2016 Feb 26;6:21618. doi: 10.1038/srep21618. — View Citation

Liu FF, Liu GZ, Zhu ZL, Wang SC, Zhao FF. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere. 2019 Jan;214:688-694. doi: 10.1016/j.chemosphere.2018.09.174. Epub 2018 Oct 1. — View Citation

Liu S, Guo J, Liu X, Yang R, Wang H, Sun Y, Chen B, Dong R. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: A pilot prospective study. Sci Total Environ. 2023 Jan 1;854:158699. doi: 10.1016/j.scitotenv.2022.158699. Epub 2022 Sep 13. — View Citation

Ljung K, Palm B, Grander M, Vahter M. High concentrations of essential and toxic elements in infant formula and infant foods - A matter of concern. Food Chem. 2011 Aug 1;127(3):943-51. doi: 10.1016/j.foodchem.2011.01.062. Epub 2011 Jan 25. — View Citation

Llorca M, Farre M, Pico Y, Teijon ML, Alvarez JG, Barcelo D. Infant exposure of perfluorinated compounds: levels in breast milk and commercial baby food. Environ Int. 2010 Aug;36(6):584-92. doi: 10.1016/j.envint.2010.04.016. Epub 2010 May 21. — View Citation

Luo Y, Chuah C, Amin MA, Khoshyan A, Gibson CT, Tang Y, Naidu R, Fang C. Assessment of microplastics and nanoplastics released from a chopping board using Raman imaging in combination with three algorithms. J Hazard Mater. 2022 Jun 5;431:128636. doi: 10.1016/j.jhazmat.2022.128636. Epub 2022 Mar 7. — View Citation

Luo Y, Gibson CT, Chuah C, Tang Y, Naidu R, Fang C. Raman imaging for the identification of Teflon microplastics and nanoplastics released from non-stick cookware. Sci Total Environ. 2022 Dec 10;851(Pt 2):158293. doi: 10.1016/j.scitotenv.2022.158293. Epub 2022 Aug 27. — View Citation

Luqman A, Nugrahapraja H, Wahyuono RA, et al. Microplastic Contamination in Human Stools, Foods, and Drinking Water Associated with Indonesian Coastal Population. Environments. 2021;8(12):138. doi:10.3390/environments8120138

Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014 Dec;10(12):723-36. doi: 10.1038/nrendo.2014.171. Epub 2014 Oct 7. — View Citation

Main KM, Mortensen GK, Kaleva MM, Boisen KA, Damgaard IN, Chellakooty M, Schmidt IM, Suomi AM, Virtanen HE, Petersen DV, Andersson AM, Toppari J, Skakkebaek NE. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect. 2006 Feb;114(2):270-6. doi: 10.1289/ehp.8075. — View Citation

Mason SA, Welch VG, Neratko J. Synthetic Polymer Contamination in Bottled Water. Front Chem. 2018 Sep 11;6:407. doi: 10.3389/fchem.2018.00407. eCollection 2018. — View Citation

Mielech A, Puscion-Jakubik A, Socha K. Assessment of the Risk of Contamination of Food for Infants and Toddlers. Nutrients. 2021 Jul 9;13(7):2358. doi: 10.3390/nu13072358. — View Citation

Mohajeri MH, Brummer RJM, Rastall RA, Weersma RK, Harmsen HJM, Faas M, Eggersdorfer M. The role of the microbiome for human health: from basic science to clinical applications. Eur J Nutr. 2018 May;57(Suppl 1):1-14. doi: 10.1007/s00394-018-1703-4. — View Citation

Nawalage NSK, Bellanthudawa BKA. Synthetic polymers in personal care and cosmetics products (PCCPs) as a source of microplastic (MP) pollution. Mar Pollut Bull. 2022 Sep;182:113927. doi: 10.1016/j.marpolbul.2022.113927. Epub 2022 Jul 22. — View Citation

Ogunrinola GA, Oyewale JO, Oshamika OO, Olasehinde GI. The Human Microbiome and Its Impacts on Health. Int J Microbiol. 2020 Jun 12;2020:8045646. doi: 10.1155/2020/8045646. eCollection 2020. — View Citation

Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J, Kangas AJ, Soininen P, Wang Z, Ala-Korpela M, Hazen SL, Laakso M, Lusis AJ. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017 Apr 13;18(1):70. doi: 10.1186/s13059-017-1194-2. — View Citation

Pauly JL, Stegmeier SJ, Allaart HA, Cheney RT, Zhang PJ, Mayer AG, Streck RJ. Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiol Biomarkers Prev. 1998 May;7(5):419-28. — View Citation

Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, Padmanabhan V, Taylor HS, Swan SH, VandeVoort CA, Flaws JA. Bisphenol a and reproductive health: update of experimental and human evidence, 2007-2013. Environ Health Perspect. 2014 Aug;122(8):775-86. doi: 10.1289/ehp.1307728. Epub 2014 Jun 4. — View Citation

Pérez-Guevara F, Roy PD, Kutralam-Muniasamy G, Shruti VC. A central role for fecal matter in the transport of microplastics: An updated analysis of new findings and persisting questions. Journal of Hazardous Materials Advances. 2021;4:100021. doi:10.1016/j.hazadv.2021.100021

Pironti C, Ricciardi M, Motta O, Miele Y, Proto A, Montano L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. Toxics. 2021 Sep 16;9(9):224. doi: 10.3390/toxics9090224. — View Citation

Praveena SM, Shaifuddin SNM, Akizuki S. Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: An evidence from Malaysia. Mar Pollut Bull. 2018 Nov;136:135-140. doi: 10.1016/j.marpolbul.2018.09.012. Epub 2018 Sep 11. — View Citation

Prietl B, Meindl C, Roblegg E, Pieber TR, Lanzer G, Frohlich E. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol Toxicol. 2014 Feb;30(1):1-16. doi: 10.1007/s10565-013-9265-y. Epub 2013 Nov 29. — View Citation

Ragusa A, Notarstefano V, Svelato A, Belloni A, Gioacchini G, Blondeel C, Zucchelli E, De Luca C, D'Avino S, Gulotta A, Carnevali O, Giorgini E. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers (Basel). 2022 Jun 30;14(13):2700. doi: 10.3390/polym14132700. — View Citation

Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti MCA, Baiocco F, Draghi S, D'Amore E, Rinaldo D, Matta M, Giorgini E. Plasticenta: First evidence of microplastics in human placenta. Environ Int. 2021 Jan;146:106274. doi: 10.1016/j.envint.2020.106274. Epub 2020 Dec 2. — View Citation

Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol. 2011 Oct;127(1-2):27-34. doi: 10.1016/j.jsbmb.2011.05.002. Epub 2011 May 13. — View Citation

Rubio-Armendariz C, Alejandro-Vega S, Paz-Montelongo S, Gutierrez-Fernandez AJ, Carrascosa-Iruzubieta CJ, Hardisson-de la Torre A. Microplastics as Emerging Food Contaminants: A Challenge for Food Safety. Int J Environ Res Public Health. 2022 Jan 21;19(3):1174. doi: 10.3390/ijerph19031174. — View Citation

Rustagi N, Pradhan SK, Singh R. Public health impact of plastics: An overview. Indian J Occup Environ Med. 2011 Sep;15(3):100-3. doi: 10.4103/0019-5278.93198. — View Citation

Sanchez C, Franco L, Regal P, Lamas A, Cepeda A, Fente C. Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy. Nutrients. 2021 Mar 22;13(3):1026. doi: 10.3390/nu13031026. — View Citation

Santos AL, Rodrigues CC, Oliveira M, Rocha TL. Microbiome: A forgotten target of environmental micro(nano)plastics? Sci Total Environ. 2022 May 20;822:153628. doi: 10.1016/j.scitotenv.2022.153628. Epub 2022 Feb 3. — View Citation

Schwabl P, Koppel S, Konigshofer P, Bucsics T, Trauner M, Reiberger T, Liebmann B. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann Intern Med. 2019 Oct 1;171(7):453-457. doi: 10.7326/M19-0618. Epub 2019 Sep 3. — View Citation

Senathirajah K, Attwood S, Bhagwat G, Carbery M, Wilson S, Palanisami T. Estimation of the mass of microplastics ingested - A pivotal first step towards human health risk assessment. J Hazard Mater. 2021 Feb 15;404(Pt B):124004. doi: 10.1016/j.jhazmat.2020.124004. Epub 2020 Oct 6. — View Citation

Sendra M, Pereiro P, Figueras A, Novoa B. An integrative toxicogenomic analysis of plastic additives. J Hazard Mater. 2021 May 5;409:124975. doi: 10.1016/j.jhazmat.2020.124975. Epub 2020 Dec 26. — View Citation

Smith M, Love DC, Rochman CM, Neff RA. Microplastics in Seafood and the Implications for Human Health. Curr Environ Health Rep. 2018 Sep;5(3):375-386. doi: 10.1007/s40572-018-0206-z. — View Citation

Sridharan S, Kumar M, Singh L, Bolan NS, Saha M. Microplastics as an emerging source of particulate air pollution: A critical review. J Hazard Mater. 2021 Sep 15;418:126245. doi: 10.1016/j.jhazmat.2021.126245. Epub 2021 May 28. — View Citation

Sun Q, Ren SY, Ni HG. Incidence of microplastics in personal care products: An appreciable part of plastic pollution. Sci Total Environ. 2020 Nov 10;742:140218. doi: 10.1016/j.scitotenv.2020.140218. Epub 2020 Jun 22. — View Citation

Usman S, Abdull Razis AF, Shaari K, Azmai MNA, Saad MZ, Mat Isa N, Nazarudin MF. The Burden of Microplastics Pollution and Contending Policies and Regulations. Int J Environ Res Public Health. 2022 Jun 1;19(11):6773. doi: 10.3390/ijerph19116773. — View Citation

Veidis EM, LaBeaud AD, Phillips AA, Barry M. Tackling the Ubiquity of Plastic Waste for Human and Planetary Health. Am J Trop Med Hyg. 2021 Nov 8;106(1):12-14. doi: 10.4269/ajtmh.21-0968. No abstract available. — View Citation

Wang L, Peng Y, Xu Y, Zhang J, Zhang T, Yan M, Sun H. An In Situ Depolymerization and Liquid Chromatography-Tandem Mass Spectrometry Method for Quantifying Polylactic Acid Microplastics in Environmental Samples. Environ Sci Technol. 2022 Sep 20;56(18):13029-13035. doi: 10.1021/acs.est.2c02221. Epub 2022 Sep 2. — View Citation

Wang Y, Huang J, Zhu F, Zhou S. Airborne Microplastics: A Review on the Occurrence, Migration and Risks to Humans. Bull Environ Contam Toxicol. 2021 Oct;107(4):657-664. doi: 10.1007/s00128-021-03180-0. Epub 2021 Mar 19. — View Citation

Weber A, Schwiebs A, Solhaug H, Stenvik J, Nilsen AM, Wagner M, Relja B, Radeke HH. Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells. Environ Int. 2022 May;163:107173. doi: 10.1016/j.envint.2022.107173. Epub 2022 Mar 15. — View Citation

Wick P, Malek A, Manser P, Meili D, Maeder-Althaus X, Diener L, Diener PA, Zisch A, Krug HF, von Mandach U. Barrier capacity of human placenta for nanosized materials. Environ Health Perspect. 2010 Mar;118(3):432-6. doi: 10.1289/ehp.0901200. Epub 2009 Nov 12. — View Citation

Xu M, Halimu G, Zhang Q, Song Y, Fu X, Li Y, Li Y, Zhang H. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ. 2019 Dec 1;694:133794. doi: 10.1016/j.scitotenv.2019.133794. Epub 2019 Aug 5. — View Citation

Yan Z, Liu Y, Zhang T, Zhang F, Ren H, Zhang Y. Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status. Environ Sci Technol. 2022 Jan 4;56(1):414-421. doi: 10.1021/acs.est.1c03924. Epub 2021 Dec 22. — View Citation

Yang H, He Y, Yan Y, Junaid M, Wang J. Characteristics, Toxic Effects, and Analytical Methods of Microplastics in the Atmosphere. Nanomaterials (Basel). 2021 Oct 17;11(10):2747. doi: 10.3390/nano11102747. — View Citation

Yang L , Kuang H , Zhang W , Wei H , Xu H . Quantum dots cause acute systemic toxicity in lactating rats and growth restriction of offspring. Nanoscale. 2018 Jun 21;10(24):11564-11577. doi: 10.1039/c8nr01248b. — View Citation

Yin K, Wang Y, Zhao H, et al. A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Science of The Total Environment. 2021;774:145758. doi:10.1016/j.scitotenv.2021.145758

Yong CQY, Valiyaveettil S, Tang BL. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. Int J Environ Res Public Health. 2020 Feb 26;17(5):1509. doi: 10.3390/ijerph17051509. — View Citation

Zhang J, Wang L, Kannan K. Polyethylene Terephthalate and Polycarbonate Microplastics in Pet Food and Feces from the United States. Environ Sci Technol. 2019 Oct 15;53(20):12035-12042. doi: 10.1021/acs.est.9b03912. Epub 2019 Sep 26. — View Citation

Zhang N, Li YB, He HR, Zhang JF, Ma GS. You are what you eat: Microplastics in the feces of young men living in Beijing. Sci Total Environ. 2021 May 1;767:144345. doi: 10.1016/j.scitotenv.2020.144345. Epub 2020 Dec 31. — View Citation

Zhang Y, Kang S, Allen S, Allen D, Gao T, Sillanpää M. Atmospheric microplastics: A review on current status and perspectives. Earth-Science Reviews. 2020;203:103118. doi:10.1016/j.earscirev.2020.103118

Zhang YX, Wang M, Yang L, Pan K, Miao AJ. Bioaccumulation of differently-sized polystyrene nanoplastics by human lung and intestine cells. J Hazard Mater. 2022 Oct 5;439:129585. doi: 10.1016/j.jhazmat.2022.129585. Epub 2022 Jul 12. — View Citation

Zheng G, Schreder E, Dempsey JC, Uding N, Chu V, Andres G, Sathyanarayana S, Salamova A. Per- and Polyfluoroalkyl Substances (PFAS) in Breast Milk: Concerning Trends for Current-Use PFAS. Environ Sci Technol. 2021 Jun 1;55(11):7510-7520. doi: 10.1021/acs.est.0c06978. Epub 2021 May 13. — View Citation

Zhu L, Zhu J, Zuo R, Xu Q, Qian Y, An L. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci Total Environ. 2023 Jan 15;856(Pt 1):159060. doi: 10.1016/j.scitotenv.2022.159060. Epub 2022 Sep 26. — View Citation

Zhu X, Huang W, Fang M, Liao Z, Wang Y, Xu L, Mu Q, Shi C, Lu C, Deng H, Dahlgren R, Shang X. Airborne Microplastic Concentrations in Five Megacities of Northern and Southeast China. Environ Sci Technol. 2021 Oct 5;55(19):12871-12881. doi: 10.1021/acs.est.1c03618. Epub 2021 Sep 24. — View Citation

Zolotova N, Kosyreva A, Dzhalilova D, Fokichev N, Makarova O. Harmful effects of the microplastic pollution on animal health: a literature review. PeerJ. 2022 Jun 14;10:e13503. doi: 10.7717/peerj.13503. eCollection 2022. — View Citation

Zrimec J, Kokina M, Jonasson S, Zorrilla F, Zelezniak A. Plastic-Degrading Potential across the Global Microbiome Correlates with Recent Pollution Trends. mBio. 2021 Oct 26;12(5):e0215521. doi: 10.1128/mBio.02155-21. Epub 2021 Oct 26. — View Citation

* Note: There are 106 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Microplastic composition in maternal breastmilk MNPs are measured using pyrolysis GC-HRMS using a Frontier Multi-Shot Pyrolyzer with Auto-Shot Sampler interfaced to a Trace 1310 gas chromatography system and Thermo Scientific Q Exactive GC Orbitrap GC-MS/MS. 1 month +/- 2 weeks postpartum
Primary Microplastic composition in maternal venous blood MNPs are measured using pyrolysis GC-HRMS using a Frontier Multi-Shot Pyrolyzer with Auto-Shot Sampler interfaced to a Trace 1310 gas chromatography system and Thermo Scientific Q Exactive GC Orbitrap GC-MS/MS. 1 month +/- 2 weeks postpartum
Primary Microplastic composition in infant stool MNPs are measured using pyrolysis GC-HRMS using a Frontier Multi-Shot Pyrolyzer with Auto-Shot Sampler interfaced to a Trace 1310 gas chromatography system and Thermo Scientific Q Exactive GC Orbitrap GC-MS/MS. 1 month +/- 2 weeks postpartum
Primary Infant weight Infant weight will be measured in duplicate on a digital scale accurate to the nearest 10 g 1 month +/- 2 weeks postpartum
Primary Infant length Infant length will be measured in duplicate to the nearest 0.1 cm using an Infantometer. 1 month +/- 2 weeks postpartum
Primary Infant skinfold thickness Infant skinfold thickness will be measured at four sites with Holtain skinfold callipers 1 month +/- 2 weeks postpartum
Secondary Maternal stool microbiome composition Maternal stool will be stored in cryovials at -80C for future metagenomic sequencing to analyze the composition of the gut microbiome. 1 month +/- 2 weeks postpartum
See also
  Status Clinical Trial Phase
Recruiting NCT05793112 - INF108F in Infants With Food Protein Induced Proctocolitis Phase 4
Recruiting NCT03828708 - Early Iron Exposure on the Gut Microbiota in Young Infants N/A
Recruiting NCT06018064 - Investigating Fit and Satisfaction of the Prone Positioner N/A
Not yet recruiting NCT06335524 - Infant-Maternal Partnership and Cognitive Training Study for Preterm Infants N/A
Not yet recruiting NCT05039918 - Neonatal Experience of Social Touch N/A
Completed NCT01166867 - A Pilot Study Using Photo-plethysmographic (PPG) Camera
Completed NCT00791466 - Maternal Iodine Supplementation and Effects on Thyroid Function and Child Development N/A
Completed NCT03331276 - Growth and Safety Study of an Infant Formula for Healthy Term Infants N/A
Completed NCT05157633 - Oral Exploration of Objects and Food Diversification
Completed NCT05217186 - Associations Between Early Neonatal Neuroimaging, Hammersmith Infant Neurological Examination and General Movements
Recruiting NCT05006989 - Blueberry Intake and Infant Gut Health N/A
Completed NCT04901611 - Parental Touch Trial (Petal) N/A
Completed NCT03082313 - Movement-based Infant Intervention N/A
Recruiting NCT06053515 - Rosie the Chatbot: Leveraging Automated and Personalized Health Information Communication N/A
Completed NCT05394883 - The SPROUT (Pilot) Project N/A
Completed NCT03991949 - Evaluation of Preterm Infants Fed Post-Discharge Preterm Infant Formula N/A
Active, not recruiting NCT03851120 - Brain Probiotic and LC-PUFA Intervention for Optimum Early Life Phase 2
Completed NCT03662048 - Improving Infant Sleep Safety With the Electronic Health Record N/A
Active, not recruiting NCT04749888 - Impact of the Korea Early Childhood Home-visiting Intervention N/A
Recruiting NCT06230848 - Multisensory Early Oral Administration of Human Milk in Preterm Infants N/A