Clinical Trials Logo

Clinical Trial Summary

This study aim to investigate the effects of anodal transcranial direct current stimulation combined with gait training for 5 consecutive session on gait performance, balance, sit to stand performance and quality of life in persons with incomplete SCI at post intervention, 1-month follow-up and 2-month follow up


Clinical Trial Description

The result from the previous studies of Water in 1994 regarding the ambulation status of patients with spinal cord injury (SCI) for a period of 1 year after injury. It was found that 76% of incomplete paraplegia and 46 % of incomplete tetraplegia can recovery their walking ability to become community ambulators. However, the recovery rate gradually decreased and started to hit the plateau level around 9 months post injury or in chronic phase. Therefore, it is a challenge in rehabilitation to restore their functions such as walking which is a primary goal of functional independence. Activity-based rehabilitation therapy (ABRT) (such as locomotion training) is an intensive intervention that has the potential to promote neurological recovery and enhance walking ability in individual with incomplete SCI. Although, ABRT showed positive results in motor function recovery in incomplete SCI survivors, it may not be able to promote full recovery, especially in chronic patients. Recent studies showed that the combination of training with top-down approach may be an option that could promote motor recovery after SCI. transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that is currently being used as an add-on treatment in neurorehabilitation. tDCS over the primary motor cortex has been shown to modulate neural activity at both cortical and spinal levels. It also produce an after-effect in modulating neuronal synaptic plasticity and increasing the expression of brain-derived neurotrophic factor (BDNF). Early tDCS studies have shown that increasing stimulation intensity or duration within certain limits enhances tDCS efficacy: while anodal stimulation increases cortical excitability, cathodal stimulation decreases it. The application of tDCS is to place the electrode in a specific montage on the decided target brain area and deliver the low-intensity current pass through that brain area for neural modulation during or after providing a rehabilitation program. Previous studies of the application of tDCS showed that applying of tDCS on primary motor cortex with intensity of 2 milliampere (mA) for 10-20 minutes combined with rehabilitation can enhance lower limb performance such as knee strength, ankle movement, and sit to stand performance in people with stroke as well as walking speed in people with Parkinson's disease. According to result from those previous studies can revealed that the combination of rehabilitation with modulation of corticospinal excitability can enhance lower limb performance in individual with neurological condition. In individuals with incomplete SCI, the excitability of the preserved corticospinal pathways is reduced which can affect the control of their motor skills and motor recovery. Several studies reported positive effect of anodal tDCS combined with training in individuals with incomplete SCI, however most of studies focused on upper limb function. Only few studies on the outcome of lower limb function and walking ability, which are required to return to their daily living and thus increase in quality of life (QOL). Moreover, most of studies in the lower limb were conducted in a small sample size and reported inconclusive results. Therefore, the purpose of this study is to determine whether the effects of combining anodal tDCS with gait training for 5 consecutive session in people with incomplete SCI can improve lower limb performance consist of gait performance(spatiotemporal), dynamic balance(time up and go test), sit to stand performance (5 times of sit to stand test) and QOL after a prolonged period of follow-up at 1-month and 2-month compare to control group of sham tDCS with gait training. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04910412
Study type Interventional
Source Mahidol University
Contact
Status Completed
Phase N/A
Start date May 25, 2021
Completion date May 31, 2022

See also
  Status Clinical Trial Phase
Recruiting NCT04102826 - Restoration of Arm Function in People With High-level Tetraplegia N/A
Recruiting NCT04052009 - Locomotor Training in Individuals With Incomplete Spinal Cord Injury. A Pilot Study N/A
Completed NCT01302522 - Mental Practice Impact on Gait and Cortical Organization in Spinal Cord Injury (SCI) Phase 2
Recruiting NCT05975606 - Non-invasive Brain Stimulation Paired With FES Cycling Post SCI N/A
Recruiting NCT04050696 - The Use of Electromagnetic Field (EMF) Treatment in Chronic Spinal Cord Injury (SCI) Patients N/A
Recruiting NCT06079138 - Tele-rehabilitation Using tDCS Combined With Exercise in People With Spinal Cord Injury N/A
Recruiting NCT05605912 - Myosuit in Incomplete Spinal Cord Injury N/A
Recruiting NCT06214546 - Effect of Different Support Systems on Gait N/A
Completed NCT04340063 - Amplify Gait to Improve Locomotor Engagement in Spinal Cord Injury N/A
Recruiting NCT05142943 - Effectiveness of Virtual Bodily Illusion Intervention in Upper Limb Motor Function in People With Incomplete Spinal Cord Injury. N/A
Enrolling by invitation NCT05341466 - The Effect of Acute Intermittent Hypoxia on Motor Learning N/A
Recruiting NCT05726591 - Evaluating Long-term Use of a Pediatric Robotic Exoskeleton (P.REX/Agilik) to Improve Gait in Children With Movement Disorders N/A
Recruiting NCT03057652 - Algorithmic-Based Evaluation and Treatment Approach for Robotic Gait Training N/A
Recruiting NCT05429736 - Activating Spinal Circuits to Improve Walking, Balance, Strength, and Reduce Spasticity N/A
Completed NCT01851629 - Walking Adaptability Post-Spinal Cord Injury N/A
Recruiting NCT01961557 - Evaluating a New Knee-Ankle-Foot Brace to Improve Gait in Children With Movement Disorders N/A
Recruiting NCT04977037 - A Telerehabilitation Program for SCI N/A
Active, not recruiting NCT04809987 - Effectiveness of Virtual Gait System Intervention in Motor Function in People With Incomplete Spinal Cord Injury. N/A
Not yet recruiting NCT06169657 - Comparison of Gait Training Methods in Sub-acute Stroke and Spinal Cord Injury
Not yet recruiting NCT05491837 - Effects of Intermittent Hypoxia in Upper and Lower Limb Functions in Persons With Incomplete Spinal Cord Injury N/A