Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT06029751
Other study ID # DHZhejiangU-2022(005)
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date January 1, 2017
Est. completion date December 31, 2025

Study information

Verified date September 2023
Source The Dental Hospital of Zhejiang University School of Medicine
Contact Yi Zhou
Phone 87217419
Email zhouyizyzyzy@163.com
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Nowadays, artificial intelligence technology with machine learning as the main means has been increasingly applied to the oral field, and has played an increasingly important role in the examination, diagnosis, treatment and prognosis assessment of oral diseases. Among them, machine learning is an important branch of artificial intelligence, which refers to the system learning specific statistical patterns in a given data set to predict the behavior of new data samples [8]. Machine learning is divided into two main categories: Supervised learning and Unsupervised learning. Whether there is supervision depends on whether the data entered is labeled or not. If the input data is labeled, it is supervised learning. Unlabeled learning is unsupervised. Supervised learning is a kind of learning algorithm when the correct output of the data set is known. Because the input and output are known, it means that there is a relationship between the input and output, and the supervised learning algorithm is to discover and summarize this "relationship". Unsupervised learning refers to a class of learning algorithms for unlabeled data. The absence of label information means that patterns or structures need to be discovered and summarized from the data set.


Description:

Starting from different data types, researchers built a variety of models to mine the data itself and predict the prognosis of the implant. Machine learning is often more impressive and intuitive in terms of images. In the field of oral implantology, researchers analyze preoperative image data based on machine learning to identify important anatomical structures (such as maxillary sinus, mandibular neural tube, etc.) and analyze alveolar bone quality. Large-scale imaging data is also used to identify the different implant systems on the market. Machine learning also plays an important role in the development of implant surgery plans, which is conducive to more accurate and efficient implantation surgery. The evaluation of implant retention rate and individual bone level is also one of the key clinical concerns. Most methods to study such issues are: Kaplan-Meier survival analysis, Cox survival analysis, etc., to study implant retention rate and influencing factors. Linear (mixed) model and multiple logistic regression were used to study the changes and influencing factors of bone absorption at implant edge. However, in daily clinical practice, there may be some practical problems such as lost follow-up and partial data missing. As the clinical scenarios of research become more and more clear, even partial data missing often leads to results that cannot be accurately evaluated and predicted. Therefore, in terms of supervised learning, this study aims to establish a predictive model of implant bone level change and evaluate the accuracy of the model through machine learning of implant edge bone level (MBL) with large amounts of data. In terms of unsupervised learning, the aim is to identify susceptibility phenotypes to implant failure through: clustering of individual-related information about implants.


Recruitment information / eligibility

Status Recruiting
Enrollment 1000
Est. completion date December 31, 2025
Est. primary completion date December 31, 2025
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - (1) Patients aged 18 years and above; (2) 1-5 years after implantation; (3) Implantation torque > 35N·cm; (4) Signed informed consent. Exclusion Criteria: - (1) Contraindications of general implantation surgery; (2) Have received head and neck radiation therapy; (3) Past or current treatment with bisphosphonates; (4) Do not cooperate with the interviewer.

Study Design


Related Conditions & MeSH terms


Intervention

Other:
No intervention
No intervention

Locations

Country Name City State
China The Stomatologic Hospital, School of Medicine, Zhejiang University Hangzhou Zhejiang

Sponsors (1)

Lead Sponsor Collaborator
The Dental Hospital of Zhejiang University School of Medicine

Country where clinical trial is conducted

China, 

References & Publications (3)

Cetiner D, Isler SC, Bakirarar B, Uraz A. Identification of a Predictive Decision Model Using Different Data Mining Algorithms for Diagnosing Peri-implant Health and Disease: A Cross-Sectional Study. Int J Oral Maxillofac Implants. 2021 Sep-Oct;36(5):952-965. doi: 10.11607/jomi.8965. — View Citation

Papantonopoulos G, Gogos C, Housos E, Bountis T, Loos BG. Prediction of individual implant bone levels and the existence of implant "phenotypes". Clin Oral Implants Res. 2017 Jul;28(7):823-832. doi: 10.1111/clr.12887. Epub 2016 Jun 1. — View Citation

Raynaud M, Aubert O, Divard G, Reese PP, Kamar N, Yoo D, Chin CS, Bailly E, Buchler M, Ladriere M, Le Quintrec M, Delahousse M, Juric I, Basic-Jukic N, Crespo M, Silva HT Jr, Linhares K, Ribeiro de Castro MC, Soler Pujol G, Empana JP, Ulloa C, Akalin E, Bohmig G, Huang E, Stegall MD, Bentall AJ, Montgomery RA, Jordan SC, Oberbauer R, Segev DL, Friedewald JJ, Jouven X, Legendre C, Lefaucheur C, Loupy A. Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study. Lancet Digit Health. 2021 Dec;3(12):e795-e805. doi: 10.1016/S2589-7500(21)00209-0. Epub 2021 Oct 28. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Mean Bone Level of dental implant The vertical distance between the implant and the first contact area of bone and the tip of the implant (mesial and distal) 1-7 years
See also
  Status Clinical Trial Phase
Not yet recruiting NCT04092920 - Implant Stability of Laser vs SLA Surface Treated Implants Placed in Fresh Extraction Sockets N/A
Not yet recruiting NCT05973357 - The Influence of Vertical Implant Position With Immediate Provisionalization on the Marginal Bone Loss. N/A
Enrolling by invitation NCT05675241 - Characterizing the Inflammation Around Dental Implants
Not yet recruiting NCT03598049 - Assessment of Dental Implants Placed in Posterior Maxillary Ridge Using Densah Burs Versus Standard Drills N/A
Completed NCT05730400 - Histological Assessment of BMAC Utilized in Sinus Lift N/A
Completed NCT05999760 - Retention, Chewing Efficiency and Masticatory Performance of Partial Dentures Opposing Implant Retained Prosthesis. N/A
Active, not recruiting NCT06020040 - Bone Particles Sizes and the Stability of Soft and Hard Tissue in Aesthetic Area N/A
Completed NCT06468592 - Implantation in Posterior Maxilla in Cases With Insufficient Bone N/A
Recruiting NCT06022042 - Clinical Comparison of On1 Two-stage Abutment With One-stage Abutment on Different Implant Neck Design N/A
Completed NCT06146244 - Comparison of ISQ in Implants Placed in Antral Area on Native Bone vs Regenerated Bone
Completed NCT05936775 - Assessment of Osseointegration Properties of Nano-Hydroxy Apatite Coated Titanium Implant N/A
Recruiting NCT06164353 - the Peri-implant Tissue Changes Around Implants in the Esthetic Zone Using Demineralized Dentin Graft vs Xenograft N/A
Not yet recruiting NCT06446687 - Radiographic Assessment of Bone Gain Following Sinus Lifting With Simultaneous Implant Placement Using Crestal Approach With Membrane Control Technique for Bone Augmentation of Atrophied Maxillary Posterior Ridge N/A
Completed NCT05187143 - Results of a New Fully Tapered Implant at One Year
Recruiting NCT06043037 - Elamrousy Modified Approach for Socket Shield Technique N/A
Recruiting NCT05817526 - BMAC Loaded Collagen Jumping the Gap Around Immediate Implants N/A
Completed NCT04230837 - Marginal Bone Level Around Implants With Definitive Abutments N/A
Completed NCT03305679 - Clinical Efficacy of the Immediate Implant Loading N/A
Completed NCT04332185 - Vestibular Socket Therapy in Compromised Sockets N/A
Recruiting NCT05057143 - 3D Printed Implants for the Defect Reconstruction in Patients With Chest Wall Tumors N/A