View clinical trials related to Idiopathic Hypersomnia.
Filter by:For diseases that cause excessive daytime sleepiness (such as narcolepsy and idiopathic hypersomnia), there are several medications that can be used to treat sleepiness. However, it can be difficult to decide which medication to use for a particular individual for several reasons: 1) there are very few studies that directly compare two medications to see which works best; 2) there are very few studies that include people with a disorder of sleepiness called idiopathic hypersomnia. To address this gap in knowledge, the researchers propose a randomized clinical trial comparing modafinil and amphetamine salts in patients with narcolepsy type 2 or idiopathic hypersomnia. All participants will either receive modafinil or amphetamine salts - no participant will receive placebo. This study will evaluate which medication works better to improve sleepiness. The researchers will also see which medication is better for other symptoms including difficulty waking up and difficulty thinking, as well as seeing which medication causes fewer side effects. Finally, this study will see if any information about patients (such as age or sleep study features) predicts responding better to one medication or the other.
this study evaluates of the efficacy of sodium oxybate on excessive daytime sleepiness using Epworth sleepiness scale over 8 weeks compared to placebo
This is a randomized, placebo-controlled, double-blind, crossover study of oral BTD-001 in adults with Idiopathic Hypersomnia.
This is a study of the efficacy and safety of JZP-258, an oxybate mixed-salts oral solution being developed as a low sodium alternative product for Xyrem.
The aim of this study is to investigate the role of the circadian system in patients with neurologic sleep-wake disorders. Therefore, overnight sleep will be distributed over 30 hours into repetitive sleep-wake cycles (poly-nap protocol), so that sleep episodes occur at different circadian phases. Vigilance, attention, risk behavior as well as sleep onset latency will be observed. Ambulatory accelerometer recordings gain more and more attention in the diagnostic work-up of sleep disorders, as they allow to also include the everyday rest-activity rhythm before examinations in the sleep laboratory. Advances of novel devices should improve the detection of rest and activity and therefore the estimation of sleep and wake, especially in patients with neurologic sleep-wake disorders exhibiting fragmented sleep. Two types of actimeters will be applied throughout our study protocol to explore better classification of sleep and wake phases and patterns of the rest-activity rhythm. This study is designed as an observational case-controlled study targeting the disorders of narcolepsy type 1 and idiopathic hypersomnia, and including interventional procedures in the healthy control group (sleep deprivation, sleep restriction) in a counter-balanced design.
This is a randomized, placebo-controlled, double-blind, multiple cohort, fixed-dose multiple crossover, dose-finding study of oral BTD-001 in adult patients with IH or Narcolepsy without cataplexy (Type 2).
CoRDS, or the Coordination of Rare Diseases at Sanford, is based at Sanford Research in Sioux Falls, South Dakota. It provides researchers with a centralized, international patient registry for all rare diseases. This program allows patients and researchers to connect as easily as possible to help advance treatments and cures for rare diseases. The CoRDS team works with patient advocacy groups, individuals and researchers to help in the advancement of research in over 7,000 rare diseases. The registry is free for patients to enroll and researchers to access. Visit sanfordresearch.org/CoRDS to enroll.
The term 'hypersomnia' describes a group of symptoms that includes severe daytime sleepiness and sleeping long periods of time (more than 10 hours per night). Sometimes, hypersomnia is caused by a problem with the quality of sleep occurring at night, for instance when nighttime sleep is disrupted by frequent breathing pauses. In other cases, however, hypersomnia occurs even when nighttime sleep is of good quality. These cases of hypersomnia are presumed to be a symptom of brain dysfunction, and so are referred to as hypersomnias of central (i.e., brain) origin, or primary hypersomnias. The causes of most of these primary hypersomnias are not known. However, our group has recently identified a problem with the major brain chemical responsible for sedation, known as GABA. In a subset of our hypersomnia patients, there is a naturally-occurring substance that causes the GABA receptor to be hyperactive. In essence, it is as though these patients are chronically medicated with Valium (or Xanax or alcohol, all substances that act through the GABA system), even though they do not take these medications. Current treatment of central hypersomnias is limited. For the fraction of cases with narcolepsy, there are FDA-approved, available treatments. However, for the remainder of patients, there are no treatments approved by the FDA. They are usually treated with medications approved for narcolepsy, but sleep experts agree that these medications are often not effective for this group of patients. Based on our understanding of the GABA abnormality in these patients, we evaluated whether flumazenil (an medication approved by the FDA for the treatment of overdose of GABA medications or the reversal of GABA-based anesthesia) would reverse the GABA abnormality in our patients. In a test tube model of this disease, flumazenil does in fact return the function of the GABA system to normal. The investigators have treated a few patients with flumazenil and most have felt that their hypersomnia symptoms improved with this treatment. To determine whether flumazenil is truly beneficial for primary hypersomnia, this study will compare flumazenil to an inactive pill (the placebo). All subjects will receive both flumazenil and the placebo at different times, and their reaction times and symptoms will be compared on these two treatments to determine if one is superior. Currently, flumazenil can only be given through an injection into a vein (i.e., intravenously). This study will evaluate this intravenous dosing as well as a new form of flumazenil, which is taken as a lozenge to be dissolved under the tongue. If this study shows that flumazenil is more effective than placebo in the treatment of hypersomnia, it will identify a potential new therapy for this difficult-to-treat disorder.
The term 'hypersomnia' describes a group of symptoms that includes severe daytime sleepiness and sleeping long periods of time (more than 10 hours per night). Sometimes, hypersomnia is caused by a problem with the quality of sleep occurring at night, for instance when nighttime sleep is disrupted by frequent breathing pauses. In other cases, however, hypersomnia occurs even when nighttime sleep is of good quality. These cases of hypersomnia are presumed to be a symptom of brain dysfunction, and so are referred to as hypersomnias of central (i.e., brain) origin. The causes of most of these central hypersomnias are not known. However, our group has recently identified a problem with the major brain chemical responsible for sedation, known as GABA. In a subset of our hypersomnia patients, there is a naturally-occurring substance that causes the GABA receptor to be hyperactive. In essence, it is as though these patients are chronically medicated with Valium (or Xanax or alcohol, all substances that act through the GABA system), even though they do not take these medications. Current treatment of central hypersomnias is limited. For the fraction of cases with narcolepsy, there are FDA-approved, available treatments. However, for the remainder of patients, there are no treatments approved by the FDA. They are usually treated with medications approved for narcolepsy, but sleep experts agree that these medications are often not effective for this group of patients. Based on our understanding of the GABA abnormality in these patients, we evaluated whether clarithromycin (an antibiotic approved by the FDA for the treatment of infections) would reverse the GABA abnormality. In a test tube model of this disease, clarithromycin does in fact return the function of the GABA system to normal. The investigators have treated a few patients with clarithromycin and most have felt that their hypersomnia symptoms improved with this treatment. To determine whether clarithromycin is truly beneficial for central hypersomnia, this study will compare clarithromycin to an inactive pill (the placebo). All subjects will receive both clarithromycin and the placebo at different times, and their reaction times and symptoms will be compared on these two treatments to determine if one is superior. If this study shows that clarithromycin is more effective than placebo in the treatment of hypersomnia, it will identify a potential new therapy for this difficult-to-treat disorder.