Hypoxic Ischemic Encephalopathy Clinical Trial
Official title:
MRI Thermal Imaging of Infants Undergoing Cooling for HIE
The investigators will determine if the MRI can be used to determine the temperature inside the brain. This is an important piece of information now that cooling the brain is being used to decrease brain damage in infants who had a decrease in brain oxygen or flow around the time of birth.
There are presently two modes of providing cooling for the infant with HIE: 1) systemic cooling of the entire body (Body Cooling) to 33.5°C documented by rectal temperature and 2) selective head cooling via an FDA approved Cool-cap device which cools the rectal temperature to 34.5°C by applying a continuous flow of very cold (10°C) water to the scalp. The potential advantage of the latter approach lies in the brain being selectively cooled relative to the rectal temperature. Experimental direct temperature measurements in animals have shown that both methods cool the brain; however, despite FDA approval and world-wide application, no one has ever demonstrated that the brain of a human can be cooled effectively, and it is further not known if the cooling is uniform. Most investigators assume the surface will be cooled to a greater degree than the deep brain structures, especially with selective head cooling.We will use a modification of the information obtained from the MRI to determine the distribution of temperatures within the infants brain. ;
Observational Model: Case-Only, Time Perspective: Prospective
Status | Clinical Trial | Phase | |
---|---|---|---|
Withdrawn |
NCT02551003 -
Neuroprotective Effect of Autologous Cord Blood Combined With Therapeutic Hypothermia Following Neonatal Encephalopathy
|
Phase 1/Phase 2 | |
Completed |
NCT02683915 -
Reno-protective Effect of Brain Cooling in Newborn With Hypoxia
|
||
Recruiting |
NCT01962233 -
Umbilical Cord Derived Mesenchymal Stem Cells Therapy in Hypoxic Ischemic Encephalopathy
|
Phase 1 | |
Completed |
NCT01471015 -
Darbe Administration in Newborns Undergoing Cooling for Encephalopathy
|
Phase 1/Phase 2 | |
Completed |
NCT01683383 -
California Transport Cooling Trial
|
N/A | |
Completed |
NCT01481207 -
Magnetic Resonance Imaging and Spectroscopy Biomarkers of Neonatal Hypoxic Ischemic Encephalopathy
|
||
Completed |
NCT01649648 -
Autologous Cord Blood Cells for Brain Injury in Term Newborns
|
Phase 1 | |
Completed |
NCT00945789 -
Erythropoietin in Infants With Hypoxic Ischemic Encephalopathy (HIE)
|
Phase 1/Phase 2 | |
Completed |
NCT00097097 -
Neonatal Resuscitation in Zambia
|
Phase 3 | |
Recruiting |
NCT02621944 -
Melatonin as a Neuroprotective Therapy in Neonates With HIE Undergoing Hypothermia
|
Early Phase 1 | |
Not yet recruiting |
NCT02605018 -
Neuroprotective Effect of Autologous Cord Blood Combined With Therapeutic Hypothermia Following Neonatal Encephalopathy
|
Phase 1/Phase 2 | |
Withdrawn |
NCT01128673 -
MRI Thermal Imaging of Infants Undergoing Cooling for Hypoxic Ischemic Encephalopathy(HIE)
|
N/A | |
Completed |
NCT01732146 -
Efficacy of Erythropoietin to Improve Survival and Neurological Outcome in Hypoxic Ischemic Encephalopathy
|
Phase 3 | |
Completed |
NCT02349672 -
Clinical Utility of Serum Biomarkers for the Management of Neonatal Hypoxic Ischemic Encephalopathy (Control Levels)
|
||
Completed |
NCT02826941 -
Moderate Hypothermia in Neonatal Hypoxic Ischemic Encephalopathy
|
Phase 2 | |
Active, not recruiting |
NCT01138176 -
Whole Body Cooling Using Phase Changing Material
|
Phase 1/Phase 2 | |
Recruiting |
NCT02578823 -
Targeted Temperature Management After In-Hospital Cardiac Arrest
|
N/A | |
Terminated |
NCT01765218 -
Topiramate in Neonates Receiving Whole Body Cooling for Hypoxic Ischemic Encephalopathy
|
Phase 1/Phase 2 | |
Completed |
NCT01241019 -
Safety and Efficacy of Topiramate in Neonates With Hypoxic Ischemic Encephalopathy Treated With Hypothermia
|
Phase 2 | |
Completed |
NCT00620711 -
Pilot Study of Head Cooling in Preterm Infants With Hypoxic Ischemic Encephalopathy
|
Phase 1 |