View clinical trials related to Hypoxemic Respiratory Failure.
Filter by:Coronavirus disease (COVID-19) can result in severe hypoxemic respiratory failure that ultimately may require invasive mechanical ventilation in the Intensive Care Unit (ICU). Although lifesaving, invasive mechanical ventilation is associated with high mortality, severe discomfort for patient, long-term sequelae, stress to loved-ones and high costs for society. During the ongoing pandemic high number of invasively ventilated COVID-19 patients overwhelmed ICU capacity. Non-invasive respiratory support, such as high flow nasal oxygen (HFNO) or non-invasive ventilation (NIV) have the potential to reduce the risk for invasive mechanical ventilation and in selected cases ICU admission. However, data from different studies are conflicting and studies performed in COVID-19 patients are of limited quality. Furthermore, identification of early predictors of HFNO/NIV treatment failure may prevent unnecessary delay of initiation of invasive ventilation, which may be associated with adverse clinical outcome. The development and validation of a prediction model, that incorporates readily available clinically data may prove pivotal to fine-tune non-invasive respiratory support. The overall aim of the NORMO2 project is to investigate the role and risks of HFNO and NIV to improve outcome in hospitalized hypoxemic COVID-19 patients.
In the context of postoperative hypertension in the intensive care units, or after resusitation of hypertensive patients, intravenous antihypertensive drugs are often used. Among those drugs, Nicardipine is an effective drug, but with side effects such as inhibition of pulmonary vasoconstriction. Only preclinical studies have investigated the pathophysiology of this mechanism, and no clinical study have proven its clinical relevance. The aim of this study is to establish the incidence of Nicardipine induced hypoxemia and to compare it to another antihypertensive agent, Urapidil.
This study will compare the impact of a classical aerosol mask above low-flow nasal cannula on the arterial oxygen tension in patients with COVID-19.
Patients with COVID-19 and hypoxaemic respiratory failure and admitted to the intensive care unit (ICU) are treated with supplementary oxygen as a standard. However, quality of quantity evidence regarding this practise is low. The aim of the HOT-COVID trial is to evaluate the benefits and harms of two targets of partial pressure of oxygen in arterial blood (PaO2) in guiding the oxygen therapy in acutely ill adult COVID-19 patients with hypoxaemic respiratory failure at ICU admission.
Our main objective is to collect feasibility data on helmet NIPPV and other clinical elements in to eventually prepare for a full scale randomized trial based on findings of this pilot study.
Infants with congenital diaphragmatic hernia (CDH) usually have pulmonary hypoplasia and persistent pulmonary hypertension of the newborn (PPHN) leading to hypoxemic respiratory failure (HRF). Pulmonary hypertension associated with CDH is frequently resistant to conventional pulmonary vasodilator therapy including inhaled nitric oxide (iNO). Increased pulmonary vascular resistance (PVR) can lead to right ventricular overload and dysfunction. In patients with CDH, left ventricular dysfunction, either caused by right ventricular overload or a relative underdevelopment of the left ventricle, is associated with poor prognosis. Milrinone is an intravenous inotrope and lusitrope (enhances cardiac systolic contraction and diastolic relaxation respectively) with pulmonary vasodilator properties and has been shown anecdotally to improve oxygenation in PPHN. Milrinone is commonly used during the management of CDH although no randomized trials have been performed to test its efficacy. Thirty percent of infants with CDH in the Children's Hospital Neonatal Database (CHND) and 22% of late-preterm and term infants with CDH in the Pediatrix database received milrinone. In the recently published VICI trial, 84% of patients with CDH received a vasoactive medication. In the current pilot trial, neonates with an antenatal or postnatal diagnosis of CDH will be randomized to receive milrinone or placebo to establish safety of this medication in CDH and test its efficacy in improving oxygenation.
The intent of this study is to validate the venous blood oxygenation measurements of the Mespere VA Oximeter compared to the saturations measured by venous blood sampling through an inserted central vein catheter, which is currently the standard of care for measuring SvO2