View clinical trials related to Hypoventilation.
Filter by:It remains unclear whether CPAP therapy should be prescribed if significant hypoxemia persists during CPAP titration, despite optimization of upper airway obstructive events, if maximum CPAP pressure is reached. The goal was to examine the effects of 6 months of home AVAPS therapy in patients with obesity hypoventilation syndrome as a potential option for patients who failed CPAP titration due to persistent hypoxemia.
The study is an open, prospective, single center clinical observational pilot investigation. The aim is to compare the carbon dioxide values measured by the IscAlert sensor, which is inserted in proximity to the nasal mucosa. The study wants to investigate if the nasal mucosa application and measurements are feasible, what kind of possible complications such a measurement can cause, and if the measurements can be a surrogate marker for systemic carbon dioxide values.
Congenital central hypoventilation syndrome (CCHS) is a rare disorder of autonomic and respiratory regulation that alters oxygen delivery to the brain. CCHS patients are at risk for broad neurocognitive deficits. Patients retain ventilatory activity when awake through a respiratory-related cortical network but the need to mobilise cortical resources to breathe lead to breathing-cognition interferences during cognitive tasks. The purpose of this study is to assess the relationship between breathing pattern and attention in CCHS children
To overcome the lack of knowledge regarding the impact of different "living low, training high" methods on swimming performance, a 4-week intervention will be carried out to determine and compare the effects of three Repeated Sprints in Hypoxia (RSH) methods with each other and with a control group. Our goal is to characterize and compare the adaptations in swimming performance and in cardiorespiratory, metabolic, and muscle oxygenation responses that can arise after a 4-week training period of RSH and RSH-voluntary hypoventilation (VHL) performed in a ski-ergometer.
This study plans to learn more about specific breathing and activity recommendations for patients after surgery. Participants will be monitored after abdominal surgery to identify what activities help them breathe better and reduce complications after surgery.
In non-invasive mechanical ventilation (NIMV), the interface is the primary determinant of success, as adherence and quality of therapy mainly depend on it. The aim of this study is to investigate the usefulness of a customised mask approach to minimise leakage and upper airway obstruction. It will focus on ventilator registries and changes in the way they can be corrected with these customised masks. The process involves 3D face scanning and dedicated computer-aided design. The processing and manufacturing of the masks is based on additive manufacturing through 3D printing.
A sub-nasal mask with a skirt that fits the nostrils and with a dedicated port for the nasogastric tube has recently been introduced. This interface has never been compared to nasal-oral masks. We hypothesise that such a sub-nasal mask increases comfort compared to a conventional naso-oral mask. The primary objective is to compare the comfort of the sub-nasal mask with that of a standard naso-oral mask.
Obesity Hypoventilation Syndrome(OHS) is a disease characterized by daytime hypercapnia and sleep-disordered breathing without other causes of hypoventilation in individuals with a body mass index above 30 kg/m2. Sources state that obesity is at the basis of the metabolic changes seen in individuals with OHS. Obesity, together with cardiovascular system complications, lung volumes, work of breathing and sleep quality, creating the basis for respiratory problems. In addition, sedentary lifestyle habits, which are common in obese individuals, cause negative effects on exercise capacity and peripheral muscle strength. It has been shown in the literature that decreased exercise capacity due to obesity strongly interacts with the risk of all-cause mortality. As a result of obesity and all this negative picture, impaired emotional state and decreased quality of life are observed in individuals. Numerous studies have shown that obese individuals generally have a low level of physical activity, there is a decrease in peripheral muscle strength, obese individuals are at risk for sleep-related respiratory problems and health-related quality of life is often negatively affected in obese individuals. With these studies, the effects of obesity on individuals have been evaluated with objective evaluation methods. However, the same cannot be said for OHS. It is not clear how exercise capacity, peripheral muscle strength and quality of life parameters, which are known to be negatively affected by obesity, are affected in individuals with OHS. Based on this point, this study aims to investigate whether OHS has an additional effect on exercise capacity, peripheral muscle strength and quality of life in addition to obesity.
Obesity Hypoventilation Syndrome(OHS) is characterized by daytime hypercapnia and sleep-disordered breathing without other causes of hypoventilation in individuals with a body mass index above 30 kg/m2. It is stated that obesity is at the basis of the metabolic changes seen in individuals diagnosed with OHS. Also sedentary lifestyle habits, which are common in obese individuals, cause the risk of sarcopenia due to loss of muscle strength and mass, accumulation of adipose tissue in the body, and decreased exercise capacity. Reduced exercise capacity due to obesity has been shown in the literature to strongly interact with mortality risk. As a result of obesity and all this negative picture, impaired emotional state and decreased quality of life are observed in individuals. Simultaneously, sleep parameters are also negatively affected. In particular, increased adipose tissue leads to loss of muscle mass and strength, increased risk of sarcopenia and sleep-related problems. The association of obesity and sarcopenia is referred to as 'sarcopenic obesity'. Sarcopenic obesity is defined as the coexistence of sarcopenia and obesity. The concept of sarcopenic obesity has recently taken its place in the literature. In particular, there are very few studies on its relationship with sleep parameters. However, while obesity is the basis of OHS, there are no studies on the presence and effects of sarcopenic obesity in this patient group. Based on this point, we aim to investigate the effects of sarcopenic obesity on sleep parameters, exercise capacity and quality of life in individuals with OHS.
COVID-19 has significantly impacted sports globally, with event postponements, training disruptions, and wide-ranging concerns. SARS-CoV-2 infection can result in hyperinflammation and cardiopulmonary changes, with hypoxia as an aggravating sign. Hypoxia triggers complex immunometabolic mechanisms, including activation of HIF-1α and induction of HLA-G expression. Hypoxia training protocols benefit aerobic capacity and sports performance, with potential immunological impact. Studying immunometabolic markers in this context can improve athletic preparation and athletes' general health.