View clinical trials related to Hypotension.
Filter by:The present study investigates the involvement of the gut hormone glucose-dependent insulinotropic polypeptide (GIP) in the pathophysiology of postprandial hypotension (PPH)
In elderly patients with cardiac diseases, changes in cardiovascular physiology diminish cardiovascular reserve and predispose to significant hemodynamic instability after spinal anesthesia; hence, such patients could be at risk of postoperative complications. Additionally, point of care ultrasound (POCUS) and transthoracic echocardiography (TTE) are used in clinical practice to evaluate cardiovascular hemodynamics. Inferior vena cava (IVC) and its collapsibility index (CI) have been used in clinical practice for the prediction of post-spinal hypotension. Specifically, the dIVCmax-to-IVCCI ratio < 48 showed high diagnostic performance among other indices in the prediction of post spinal hypotension in elderly patients with cardiac diseases undergoing proximal fracture repair. According to the above findings, the investigators hypothesized that fluid co-loading immediately after spinal anesthesia can lower the incidence of spinal-induced hypotension in patients with dIVCmax-to-IVCCI ratio < 48. For this reason, it is prospectively evaluated echocardiographic indices of the LV and the right ventricle (RV), as well as of the IVC prior to spinal anesthesia in elderly patients with proximal femur fractures who had low LV-EF.
Perioperative hypotension is a risk factor for perioperative complications. Advances in machine learning and artificial intelligence have produced an algorithm that predicts the occurrence of hypotension episodes by analyzing an arterial pressure waveform. This technology has not been validated in thoracic surgical patients undergoing lung resections with the use of one-lung ventilation (OLV). We planned an observational, prospective multi-centre cohort validation study of the Hypotension Prediction Index (HPI) in patients undergoing lung resection procedures with the use of one-lung ventilation and a lung-protective strategy.
The main aim of this investigation is to evaluate the effect of the preservative-free ophthalmic solution IRIDIUM® A gel on the ocular surface of patients with glaucoma or OHT and concomitant DES under multiple long-term topical hypotensive therapy for at least 6 months. The underlying assumption is that ophthalmic solutions as adjuvants for the management of IOP- or glaucoma-associated dry eye may induce a protection of the eye surface with consequent improvement of the symptoms and of the overall quality of life.
Background Orthostatic hypotension (OH) is a common cause of falls, and key source of morbidity and mortality due to injury (e.g. hip fracture). Current guidelines recommend increasing salt intake in patients with symptomatic orthostatic hypotension. However, the evidence underpinning this recommendation is poor, based primarily on small trials with very short-term follow-up (< 6 weeks). Clinical Equipoise (Overall) High salt intake might improve quality of life and reduce the risk of falls, but might also increase the risk of cardiovascular disease, in patients with OH. Specific Objective of Current Application (Aim) To determine feasibility (recruitment, retention and adherence) of conducting a randomized controlled trial evaluating high salt intake in older adults with symptomatic orthostatic hypotension. To determine preliminary estimates of the effect of high salt intake on disease-specific quality of life, orthostatic blood pressure (BP) parameters, and cardiac blood biomarkers. Design: Phase IIa, parallel, double-blind, randomised controlled, single centre clinical trial of 12 month follow-up duration. Population: Older adults (≥65 years of age) with an objective diagnosis of symptomatic orthostatic hypotension Intervention: The intervention will be 5g/day of salt supplementation in the form of encapsulated sodium chloride. Outcome measures: Primary outcome (Feasibility) recruitment and retention rates, adherence with intervention and study protocol, completeness of follow-up. Secondary Outcome (Efficacy): i) clinical: change in Orthostatic Hypotension Questionnaire score, modification/addition of OH pharmacotherapy, and falls events, ii) physiological measures of orthostasis: change in difference between supine and nadir systolic BP, standing BP at 1 minute, 24 hour mean BP measured by 24 hour ambulatory BP monitor, iii) cardiovascular biomarkers. Clinical Importance: A recommendation for long-term increases in salt intake may have adverse cardiovascular consequences, which necessitates the identification of the optimal range of salt intake associated with greatest reduction in falls risk and lowest cardiovascular risk. Our study will provide preliminary evidence of treatment effect and assess feasibility, to inform a definitive trial.
For the treatment of numerous biliary and pancreatic problems, the procedure known as endoscopic retrograde cholangiopancreatography (ERCP) is regarded as a crucial therapeutic intervention. However, ERCP is known to be connected to a variety of issues, including post-ERCP sepsis. This study's goal is to investigate the relationship between unexplained hypotension during or just after surgery and the emergence of sepsis after ERCP.
Hypotension is a significant precursor to unfavorable clinical outcomes. To determine whether infusion therapy can positively impact the management of hypotension, several evaluative tests can be utilized. These include assessing the collapsibility and distensibility indices of the inferior vena cava, conducting a passive leg raising (PLR) test, and performing a fluid challenge (FC). Technologically advanced methods leveraging dynamic testing are capable of real-time prediction of a patient's response to infusion therapy. Nonetheless, the use of systolic pressure variability (SPV), pulse pressure variability (PPV), and stroke volume variability (SVV) is often limited by the prohibitive costs of the necessary equipment. In contrast, the PLR test and FC are not subject to this limitation. Despite being deemed unreliable by numerous clinical protocols, static measurements of central venous pressure (CVP) or pulmonary capillary wedge pressure (PCWP) persist in usage among certain traditionalists within the medical community. It must be noted that the patient's baseline state and the unique clinical context are pivotal in determining the precision of these methodologies. For example, the PLR test may yield limited information in fully conscious patients, and the prognostic value of CVP measurements is significantly diminished in cases of pneumothorax and hydrothorax. Regrettably, there is a paucity of data on the prognostic utility of these tests in patients with altered levels of consciousness, despite their growing presence in intensive care units. This gap underscores the necessity for comprehensive studies that evaluate the predictive efficacy of infusion therapy responsiveness in patients with concurrent hypotension and impaired consciousness. Purpose of the study: to investigate the sensitivity and specificity of methods for assessing fluid responsiveness in patients with hypotension and decreased level of consciousness.
The cesarean section, medically necessary for both the mother and the baby in certain cases, is a life-saving operation.The most commonly used anesthesia method worldwide is spinal anesthesia. While spinal anesthesia has many advantages, it also has disadvantages. One of the most commonly encountered disadvantages is the development of hypotension due to the unopposed parasympathetic response after induction. Determining which patient will develop hypotension and which patient will not remains an important question for anesthesiologists before surgery. Identifying high-risk patients for hypotension before starting spinal anesthesia and even knowing the percentage of patients who will develop hypotension undoubtedly saves time in problem-solving. From this perspective, the idea for this study emerged: identifying parameters with the potential for use in prediction based on the literature, collecting data, then testing the relationship between them using machine learning methods, and developing an algorithm capable of predictive analysis. At the end of the study, an artificial intelligence algorithm for predicting hypotension after induction will be developed, and its performance will be tested. The main goals of the study: i)Create a dataset including the clinical characteristics, demographic data, and blood test results of patients who develop and do not develop hypotension after spinal anesthesia. ii) Develop an artificial intelligence algorithm using the dataset and determine the most accurate algorithm for predicting hypotension. iii) To test the accuracy of the developed algorithm, create a test dataset, measure and optimize the algorithm's performance. Accuracy, sensitivity, specificity, and Receiver Operating Characteristic (ROC) curves will be used for performance measurement. iv) Create a suitable interface (a surface for interaction with the software) to make the developed algorithm usable in clinical practice.
General anesthesia is frequently used in daily clinical practice. Elderly patients often require a higher level of care than younger patients during the perioperative period, with higher health care costs. Strategies to optimize anesthesia care to reduce complications and improve outcomes in elderly surgical patients will also be of great value to the individual patients and society.
The objective of this study is to investigate the impact of varying maternal blood pressure maintenance targets on maternal hemodynamics following cesarean section.