Clinical Trials Logo

Clinical Trial Summary

We made a fortuitous observation of periodic breathing in a healthy subject coming to our outpatient mountain medicine consultation at Avicenne hospital in Bobigny (France). During this consultation, subjects perform a hypoxia exercise test, which allows a good prediction of their risk factors for severe high altitude illnesses. Surprisingly, breath-by-breath recording of the ventilation signal showed a periodic breathing pattern, which increased when the subject started to exercise in hypoxic conditions and was maintained during normoxic exercise.

Therefore, our objective was to confirm this observation in a retrospective study led in 82 subjects who passed this test. We tested the hypothesis that subjects with a brisk ventilatory response to hypoxia might show a more pronounced periodic pattern of ventilation, due to a higher gain of the chemoreceptor feedback loop. Then, our objective is to investigate the mechanisms involved in the periodic pattern in healthy subjects, as a function of exercise intensity, altitude intensity, role of peripheral and central chemoreceptors to O2 and CO2. Finally, we want to investigate the possible role of this ventilatory instability in patients with obstructive or central apneas.


Clinical Trial Description

In a preliminary study, among the population coming to the outpatient consultation of mountain medicine at Avicenne hospital in 2012, 82 subjects (38 females and 44 males) were randomly selected and separated in two groups of 41 high and 41 low responders to hypoxia according to the median value of the hypoxic ventilatory response to hypoxia at exercise (HVRe > or < 0.84 L/min/kg) derived from the hypoxic exercise test (inspired fraction of O2: 0.115, exercise intensity of 30% of maximal aerobic power), as previously described.

The hypoxic exercise test consists in 4 successive phases of 3 to 4 minutes each with the following sequence: rest in normoxia (RN), rest in hypoxia (RH), exercise in hypoxia (EH) and exercise in normoxia (EN). Minute ventilation ( E, L.min-1) is measured through a metabograph (Vmax Encore, SensorMedics, Yorba Linda, CA). Pulse O2 saturation (SpO2, %) is measured by transcutaneous oximetry (Nellcor N-595, Nellcor, Pleasanton, CA) on a pre-warmed ear lobe. End tidal PCO2 (PETCO2) is measured by infrared thermopile (Vmax Encore, SensorMedics, Yorba Linda, CA). During the whole test, VE, SpO2 and PETCO2 were recorded breath-by-breath. Continuous blood pressure is measured by a Finapres system. Data are transferred to a computer for further spectrum analysis. A Fast Fourier Transform (FFT) is then applied to the ventilation signal in sequences of 128 points in each phase of the test. This method will allow us to detect the presence of peaks in the frequency domain of the ventilation signal. Two main parameters are derived from the FFT: the frequency in hertz (or period in seconds) of the larger peak and its power estimated as the area under the peak at ± 0.02 Hz around the peak (in L2.s-2).

The main study will be designed in order to unravel the mechanisms and role of these oscillations in ventilation. An overall population of 90 healthy subjects and 30 patients will be included in the study.

Step 1. Effect of exercise intensity.

Step 2. Effect of altitude level.

Step 3. Effect of the stimulation of central chemoreceptors by acetazolamide.

Step 4. Effect of inhibiting the peripheral chemoreceptors by hyperoxia.

Step 5. Effect of inhibiting the peripheral chemoreceptors by hyperoxia and stimulating the central chemoreceptors by hypercapnia.

Step 6. Evaluating the presence of these oscillations in patients with sleep apneas.

Step 7. Evaluating the presence of these oscillations in patients with cardiac failure. ;


Study Design

Observational Model: Cohort


Related Conditions & MeSH terms


NCT number NCT02201875
Study type Observational
Source Association pour la Recherche en Physiologie de l'Environnement
Contact Jean-Paul Richalet, MD, PhD
Phone 33148387758
Email richalet@univ-paris13.fr
Status Not yet recruiting
Phase N/A
Start date September 2014
Completion date December 2015

See also
  Status Clinical Trial Phase
Recruiting NCT04498598 - Structural Modification In Supraglottic Airway Device N/A
Completed NCT05532670 - N600X Low Saturation Accuracy Validation
Enrolling by invitation NCT04106401 - Intravascular Volumes in Hypoxia During Antarctic Confinement N/A
Recruiting NCT05883137 - High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
Not yet recruiting NCT05817448 - Hypoxia-induced Autophagy in the Pathogenesis of MAP
Recruiting NCT02661152 - DAHANCA 30: A Randomized Non-inferiority Trial of Hypoxia-profile Guided Hypoxic Modification of Radiotherapy of HNSCC. Phase 3
Terminated NCT02801162 - Evaluation of Accuracy and Precision of a New Arterial Blood Gas Analysis System Blood in Comparison With the Reference Standard N/A
Completed NCT02943863 - Regional Ventilation During High Flow Nasal Cannula and Conventional Nasal Cannula in Patients With Hypoxia N/A
Completed NCT01922401 - Inverse Ratio Ventilation on Bariatric Operation N/A
Completed NCT02105298 - Effect of Volume and Type of Fluid on Postoperative Incidence of Respiratory Complications and Outcome (CRC-Study) N/A
Active, not recruiting NCT01681238 - Goal-directed Therapy in High-risk Surgery N/A
Completed NCT01463527 - Using Capnography to Reduce Hypoxia During Pediatric Sedation N/A
Completed NCT01507623 - Value of Capnography During Nurse Administered Propofol Sedation (NAPS) N/A
Withdrawn NCT00638040 - The Gene Expression Studies of the Role of Tumor Microenvironments in Tumor Progression N/A
Active, not recruiting NCT06097754 - Intermittent Exogenous Ketosis (IEK) at High Altitude N/A
Completed NCT04589923 - The VISION-Acute Study
Completed NCT05044585 - Evaluation of RDS MultiSense® in Desaturation Analysis in Healthy Volunteers N/A
Completed NCT03659513 - The Effect of ECMO on the Pharmacokinetics of the Drugs and Their Clinical Efficacy
Completed NCT03221387 - Sleep and Daytime Use of Humidified Nasal High-flow Oxygen in COPD Outpatients N/A
Not yet recruiting NCT05914324 - Outpatient Pediatric Pulse Oximeters in Africa N/A