Clinical Trials Logo

Clinical Trial Summary

The goal of this clinical trial is to identify those situations in which the increase of lactate levels is not clinically relevant since it is associated with altered genetic polymorphism of the genes involved in the membrane proteins acting as carriers for lactate (mainly monocarboxylate transporters, MCTs) patients undergoing major abdominal surgery. The main questions it aims to answer are: 1. Is there a relationship between the lactate levels in the immediate post-operative period and the presence of some lactate receptor polymorphisms? 2. Can hyperlactacidemia related to lactate receptor polymorphisms affect length of stay in the recovery room and/or in intensive care unit, postoperative hospital stay, postoperative complications? - Which are the risk factors for hyperlactacidemia in the immediate post-operative period in addition to the presence of lactate receptors polymorphisms? Participants will undergo pre-operative genomic assay testing.


Clinical Trial Description

Lactic acidosis is traditionally attributed to cellular hypoxia, to an imbalance between the body's demand for oxygen and its availability. Lactate is produced by the muscles, skin, brain, red blood cells and intestine and eliminated by the liver and kidneys. Lactate is produced by the following biochemical reaction: Pyruvate + reduced nicotinamide adenine dinucleotide (NADH) + H+ ↔ Lactate + nicotinamide-adenine dinucleotide (NAD+). Under normal conditions, this reaction produces lactate from pyruvate in a ratio of 10 to 1. Pyruvate comes from glycolysis and is used by mitochondria. When glycolysis is increased or mitochondrial oxidative phosphorylation is blocked, pyruvate accumulates and is converted into lactate generating hyperlactacidemia and acidosis. Normal lactate levels are 0-2 mmol/L. Hyperlactacidemia, usually defined as values above 2.2 mmol/L, is divided into two types: A (associated with hypoxia) and B (related to increased stress-induced aerobic metabolism, mitochondrial diseases and the use of drugs such as metformin and beta2 agonists). The lactate/pyruvate ratio allows us to distinguish the two types of hyperlactacidemia. In hyperlactacidemia type A, this ratio is >10 while in type B it remains constant (L/P=10). In case of liver dysfunction, hyperlactacidemia may be associated with a variable L/P ratio based on the determining cause reduction in lactate clearance. In fact, lactate extraction may depend on the hepatic blood flow, the polymorphism of some genes involved in the lactate transport (mainly MCT1) and the potential of hydrogen (pH) which inhibits gluconeogenesis when lower than 7.10. Since lactic acid is an hydrophilic weak acid, its transport across membranes requires transporters that belong to the transporter family monocarboxylates (MCTs) encoded by the solute carrier family 16 (SLC16) gene family. It has been demonstrated that the MCT1 (rs1049434) T1470A polymorphism is associated with a deficit in the transmembrane transport of lactate: in fact, the T allele is correlated with an approximately 50% reduction in the lactate transport rate compared to the A6 allele. MCT4, which has a very low affinity for pyruvate and a greater affinity for lactate, ensures that pyruvate is converted into lactate before transmembrane transport. Polymorphisms affecting these receptors can influence the different speed of transmembrane lactate flow and therefore correlate with lesser or greater accumulation of serum lactate. Another membrane receptor involved in lactate transport has recently been described: G-coupled protein receptor 81 (GPR81), present in adipocytes. Polymorphisms affecting the gene encoding this receptor could correlate with a different accumulation of lactate. An increase in the level of lactates is often correlated with increased morbidity and mortality in critical situations critical such as sepsis, trauma, major cardiac and abdominal surgery. Measurement of perioperative biomarkers such as lactate is often used in clinical practice as an outcome predictor. However, there are no studies aimed to identify those situations in which the increase of lactates is not clinically relevant since it is associated with altered genetic polymorphism. The investigators hypothesized that lactate levels at 3 hours after the end of major abdominal surgery will be higher in the patients carrying the T allele versus the A allele for MCT1 gene. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06222021
Study type Interventional
Source Fondazione Policlinico Universitario Agostino Gemelli IRCCS
Contact Paola Aceto, MD
Phone 00390630154507
Email paola.aceto@policlinicogemelli.it
Status Not yet recruiting
Phase N/A
Start date February 2024
Completion date October 2025

See also
  Status Clinical Trial Phase
Recruiting NCT03181620 - Sedation Administration Timing: Intermittent Dosing Reduces Time to Extubation N/A
Recruiting NCT04205058 - Coffee After Pancreatic Surgery N/A
Completed NCT06425601 - A Comparison of Silicone Versus Polyvinylchloride (PVC) Drains Following VATS Lobectomy N/A
Completed NCT02565420 - Saline Versus Lactated Ringer's Solution: The SOLAR Fluid Trial N/A
Recruiting NCT04519593 - ABSOLUTELY: A Temporary Uterine Blood Supply Occlusion for Laparoscopic Myomectomy in Patients With UTErine LeiomYoma N/A
Completed NCT03662672 - Rib Raising for Post-operative Ileus N/A
Completed NCT03787849 - Epigenetics in PostOperative Pediatric Emergence Delirium N/A
Active, not recruiting NCT05886387 - a Bayesian Analysis of Three Randomised Clinical Trials of Intraoperative Ventilation
Not yet recruiting NCT06351475 - Efficacy of Intraoperative Use of 20% Albumin Combined With Ringer Lactate Versus Ringer Lactate During Cytoreductive Surgery With Hyperthermic Intraperitoneal Chemotherapy N/A
Not yet recruiting NCT05052021 - The South African Coronavirus Disease of 2019 (COVID-19) Surgical Outcomes Study
Not yet recruiting NCT03591432 - A Trial Comparing Transnasal humidified Rapid insufflation Ventilatory Exchange (THRIVE) and Apneic Oxygenation With Facemask Ventilation in Elderly Patients Undergoing Induction of Anaesthesia. N/A
Not yet recruiting NCT03639012 - Outcomes of Carbohydrate Loading Paediatric Patients Preoperatively for Tonsillectomy and Adenoidectomy N/A
Not yet recruiting NCT03275324 - Use of Integrated Pulmonary Index to Predict Post-Operative Respiratory Adverse Events in High Risk Patients N/A
Recruiting NCT02763878 - Uncut Roux-en-y Anastomosis Reduce Postoperative Complication and Improve Nutritional Status After Distal Gastrectomy Phase 3
Completed NCT02947789 - Predictive Model for Postoperative Mortality N/A
Completed NCT02891187 - Visits Versus Telephone Calls for Postoperative Care N/A
Not yet recruiting NCT02542423 - Endocan Predictive Value in Postcardiac Surgery Acute Respiratory Failure. N/A
Completed NCT02766062 - Effects of Propofol and Sevoflurane on Early POCD in Elderly Patients With Metabolic Syndrome N/A
Recruiting NCT01934049 - Postoperative Recovery in Elderly Patients Undergoing Hip Hemi-arthroplasty Phase 4
Enrolling by invitation NCT01744938 - Preoperative Biliary Drainage for the Lower Malignant Obstructive Jaundice Phase 3