Clinical Trials Logo

Hypercapnia clinical trials

View clinical trials related to Hypercapnia.

Filter by:
  • Not yet recruiting  
  • Page 1 ·  Next »

NCT ID: NCT06303518 Not yet recruiting - Anesthesia Clinical Trials

End Tidal Carbon Dioxide Concentration and Depth of Anesthesia in Children

Start date: May 2024
Phase: N/A
Study type: Interventional

Carbon Dioxide (CO2) is a by-product of metabolism and is removed from the body when we breathe out. High levels of CO2 can affect the nervous system and cause us to be sleepy or sedated. Research suggests that high levels of CO2 may benefit patients who are asleep under anesthesia, such as by reducing infection rates, nausea, or recovery from anesthesia . CO2 may also reduce pain signals or the medication required to keep patients asleep during anesthesia; this has not been researched in children. During general anesthesia, anesthesiologists keep patients asleep with anesthetic gases or by giving medications into a vein. These drugs can depress breathing; therefore, an anesthesiologist will control breathing (ventilation) with an artificial airway such as an endotracheal tube. Changes in ventilation can alter the amount of CO2 removed from the body. The anesthesiologist may also monitor a patient's level of consciousness using a 'Depth of Anesthesia Monitor' such as the Bispectral Index (BIS), which analyzes a patient's brain activity and generates a number to tell the anesthesiologist how asleep they are. The investigator's study will test if different levels of CO2 during intravenous anesthesia are linked with different levels of sedation or sleepiness in children, as measured by BIS. If so, this could reduce the amount of anesthetic medication the child receives. Other benefits may be decreased medication costs, fewer side effects, and a positive environmental impact by using less disposable anesthesia equipment.

NCT ID: NCT06298435 Not yet recruiting - Clinical trials for Postoperative Complications

Optimising Ventilatory Strategies by Using Positive Respiratory Integer Measurements

OPTIMVSPRIME
Start date: March 1, 2024
Phase:
Study type: Observational

• Background Intermittent Positive Pressure Ventilation is used during general anesthesia but can lead to serious complications. Respiratory parameter settings can be adjusted to minimize the detrimental effects of this unphysiological artificial respiration. Determining optimal ventilator settings is a multifactorial problem with many possible realisations. Knowledge of the relationship of patient outcomes with mathematically identifiable integer sets of ventilator setting parameters may help to understand which effects ventilator settings have on patient outcomes. An exploratory database study can provide a basis for further, prospective, interventional studies to find the optimal combination of ventilator settings. Main research question - To determine the relationship between the use of mathematically identifiable integer ventilator parameter sets and patient outcomes - Design (including population, confounders/outcomes) Retrospective database study of all cases of adult patients undergoing procedures in the UMCG under general anesthesia with IPPV between 01-01-2018 and 01-04-2023. Multivariate and mixed-model analyses, where appropriate, will be corrections for patient specific characteristics such as ASA PS, age, BMI, sex. - Expected results Using mathematically identifiable integer ventilatory parameter sets improves respiratory and/or hemodynamic patient outcomes.

NCT ID: NCT06257667 Not yet recruiting - COPD Clinical Trials

Treatment of Acute Hypercapnic Respiratory Failure With OptiflowTM or Optiflow+DuetTM Nasal Cannula in COPD-patients

DUACT
Start date: March 31, 2024
Phase: N/A
Study type: Interventional

Hypothesis Treatment with HFNC and OptiflowTM+Duet can significantly reduce PaCO2 and normalize pH in patients with COPD exacerbation and acute hypercapnic failure, compared to HFNC with OptiflowTM. Treatment with High flow and OptiflowTM+Duet in patients with COPD exacerbation and acute hypercapnic failure is well tolerated. Aims To investigate the effect of HFNC in combination with either OptiflowTM or OptiflowTM+Duet nasal cannula on PaCO2 levels and pH in patients with COPD exacerbation and acute hypercapnic failure and compare the results of treatment with the two different nasal cannulas. To describe adherence to treatment with high flow and either OptiflowTM or OptiflowTM+Duet nasal cannula. Methods Study design The study will be carried out as a prospective, multicenter, randomized controlled trial. - Patients COPD and acute hypercapnic who do not tolerate NIV-treatment will be treated with HFNC for respiratory support. Patients will be randomized to either OptiflowTM /OptiflowTM+Duet nasal cannulas ("Fisher & Paykel Healthcare", Auckland, New Zealand) - HFNC treatment with allocated nasal cannula, flow 40-60 (prescribed by the responsible clinician) will be initiated, titration of FiO2 till target SO2 is reached (as prescribed by the responsible clinician or by default 88-92%). Maximal flow and target saturation should be reached within 1.5 hours of initiation. - Arterial puncture (registering pH, PaO2, PaCO2, HCO3, SaO2 and Base Excess) will be drawn at baseline and repeated after two hours (±30 minutes and after flow and FiO2 have been stable for 30 minutes) and at termination of the HFNC. - Patients will remain in study till it is decided by the treating physician to terminate HFNC-treatment. Patients who are candidates for invasive ventilations will be excluded from the study if the arterial blood gasses further deteriorate after initiation of HFNC.

NCT ID: NCT06212180 Not yet recruiting - Clinical trials for Acute Respiratory Failure

Comfort of Patients Under Non Invasive Ventilation According to the Mask

ComPaNIV
Start date: January 2024
Phase:
Study type: Observational

A sub-nasal mask with a skirt that fits the nostrils and with a dedicated port for the nasogastric tube has recently been introduced. This interface has never been compared to nasal-oral masks. We hypothesise that such a sub-nasal mask increases comfort compared to a conventional naso-oral mask. The primary objective is to compare the comfort of the sub-nasal mask with that of a standard naso-oral mask.

NCT ID: NCT06114667 Not yet recruiting - Clinical trials for Acute Exacerbation of Chronic Obstructive Pulmonary Disease

Nasal High Flow Versus Non-invasive Ventilation for Early Treatment of Acute Exacerbation of Chronic Obstructive Pulmonary Disease With Hypercapnic Acidosis

HiCOPD
Start date: November 1, 2023
Phase: N/A
Study type: Interventional

The purpose of this study is to determine whether nasal high flow is non inferior to non invasive ventilation (NIV) in the early treatment of patients with acute exacerbation of chronic obstructive pulmonary disease (AE-COPD) and hypercapnic acidosis in the emergency department (ED). After obtaining informed consent, participants will be randomly assigned to receive either nasal high flow or non invasive ventilation (NIV, reference treatment) as respiratory support. Researchers will compare both respiratory support groups to see if their blood gas analysis and respiration return to normal ranges.

NCT ID: NCT06064409 Not yet recruiting - Respiratory Failure Clinical Trials

Optimal Timing and Failure Prediction of High Flow Nasal Cannula Oxygen Therapy in Emergency Department: Prospective Observational Single Center Study

Start date: November 1, 2023
Phase:
Study type: Observational

This study targets adult patients treated with high flow nasal cannula (HFNC) at emergency department (ED) of Severance hospital, Yonsei university. Patients with acute hypoxic respiratory failure presenting to the ED receive conventional oxygen therapy as initial treatment unless immediate endotracheal intubation is required. Partial rebreathing oxygen masks are mainly applied at first. If the patient's condition does not improve despite such treatment, the patient receives HFNC or endotracheal intubation. However, possible treatment range have not been studied, especially in ED. Decisions are made based on the personal experience of the medical staff in charge. Applying HFNC to patients who eventually fail can lead to delayed intubation and increased mortality. Failure prediction models such as ROX index and HACOR score have been developed due to such reasons. However, such models are mostly based on intensive care unit studies and after application of HFNC. Therefore, failure prediction model at the time before application of HFNC and efficacy of existing models in ED are necessary. This study is a prospective observational study and follows the standard treatment guidelines applied to the patient and the judgment of the attending physician during the patient's treatment process. Immediately before applying HFNC, the patient's respiratory rate, pulse rate, blood pressure, SpO₂, PaO₂, PaCO₂, GCS score are determined, and FiO₂ is measured above upper lips using oxygen analyzer(MaxO2+AE, Maxtec, USA). From these data, ROX index (SF ratio/respiratory rate), ROX-HR (ROX index/pulse rate), POX index (PF ratio/respiratory rate), POX-HR (POX index/pulse rate), and HACOR score (Heart Rate, Acidosis, Consciousness, Oxygenation, Respiratory rate) are calculated. The settings (flow rate, FiO₂, temperature) at the time of HFNC application are also measured. The same indices and HFNC settings are checked 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, and 12 hours after applying HFNC. Modified Borg score and comfort scale using 5-point Likert scale are additionally determined at 30 minutes for patient's comfort. Primary outcome is HFNC failure at 28 days, defined by endotracheal intubation. Other outcomes include intubation in ED and mortality at 28 and 90 days collected through phone interview. The receiver operating curve for ROX index, HACOR score, ROX-HR, and POX-HR at baseline, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, and 12 hours are drawn for the outcomes. The area under the curve of the above indices are compared and cutoff values are chosen with maximum value of index J by the Youden's Index. A binary variable is created based on the cutoff values and multivariable logistic regression analyses are performed. Cutoff values for maximum specificity are also invested suggesting the lower limit of the indicator to which HFNC can be applied.

NCT ID: NCT05674760 Not yet recruiting - Clinical trials for Acute Hypercapnic Respiratory Failure

ReAcT CO2: A Study to Assess TcCO2 to Guide Acute NIV

ReAcTCO2
Start date: February 10, 2023
Phase: N/A
Study type: Interventional

Arterial blood sampling is needed to monitor carbon dioxide and PH but is often painful. The aim of this study is to determine whether continuous carbon dioxide monitoring with a skin probe reduces the need for arterial blood sampling by at least 30%. The investigators will also study the safety and effectiveness of skin probe monitoring to manage non-invasive ventilation (NIV).

NCT ID: NCT05499039 Not yet recruiting - Clinical trials for Acute Hypoxemic Respiratory Failure

High Flow Nasal Cannula Versus Non-Invasive (NIV)in Both Hypoxemic and Hypercapnic Respiratory Failure.

Highflow
Start date: October 10, 2022
Phase: N/A
Study type: Interventional

high flow nasal cannula (HFNC) oxygen therapy utilizes an air oxygen blend allowing from 21 % to 1 00% FiO2 delivery and generates up to 60 L/min flow rates The gas is heated and humidified through an active heated humidifier and delivered via a single limb heated inspiratory circuit (to avoid heat loss and condensation) to the patient through a large diameter nasal cannula Theoretically, HFNC offers significant advantages in oxygenation and ventilation over COT. Constant high flow oxygen delivery provides steady FiO2 and decreases oxygen dilution. It also washes out physiologic dead space and generates positive end expiration pressure (PEEP) that augments ventilation The heated humidification facilitates secretion clearance, decreases bronchospasm, and maintains mucosal integrity. This study aims to evaluate the effectiveness of HFNC compared to NIMV in management of Acute hypoxemic and acute hypercapneic respiratory failure

NCT ID: NCT05497986 Not yet recruiting - Clinical trials for Hypercapnic Respiratory Failure

Conventional Low Flow Oxygenation Versus High Flow Nasal Cannula in Hypercapnic Respiratory Failure

Start date: October 2022
Phase: N/A
Study type: Interventional

Current evidence suggests a mechanistic and physiological rationale for the use of high flow nasal cannula (HFNC) in acute respiratory hypoxemic failure (AHRF) based on physiological studies in airway models, healthy volunteers and patients with Chronic Obstructive Respiratory Disease (COPD). This is supported by observational studies in patients with AHRF with reductions in a range of respiratory and other physiological parameters. Observational studies also suggest similar intubation rates and lower failure rates with HFNC when compared to non-invasive ventilation (NIV) with improved patient acceptance and tolerance for HFNC. The role of HFNC is less clear in acute hypercapnic respiratory failure. Although non-invasive ventilation is the recommended treatment, it is associated with discomfort, and a significant proportion (up to 25% in some reports) cannot tolerate non-invasive ventilation. Observational reports and limited data from randomized controlled trials suggests that HFNC is effective in treating patients with hypercapnic respiratory failure. We designed this trial to assess whether early application of HFNC in patients with non-severe hypercapnic respiratory failure can correct barometric abnormalities, and prevent progression to non-invasive ventilation or tracheal intubation and mechanical ventilation.

NCT ID: NCT05011877 Not yet recruiting - Clinical trials for Acute Hypercapnic Respiratory Failure

The Simplify Project

SIMPLIFY
Start date: September 1, 2021
Phase:
Study type: Observational

The high frequency of unplanned hospital visits of patients with chronic hypercapnic respiratory failure (e.g., chronic obstructive pulmonary disease, obesity-related hypoventilation) constitutes a major public health problem. Most patients admitted for acute exacerbations (AHRF) have additional comorbidities, especially sleep disorders. Often untreated, sleep disorders contribute to multiple readmissions (≈70% at one year) and increase readmission costs. The investigators will: 1) identify these patients early during unplanned hospital admissions and perform sleep studies using EEG and oximetry before hospital discharge and two months after to compare sleep abnormalities in the two moments; 2) investigate the association between sleep abnormalities in the two sleep studies with clinical outcomes (1-year readmission and death); 3) investigate the acute effects of high-flow nasal cannula (HFNC) to treat sleep abnormalities as a simplified alternative. The investigators anticipate sleep abnormalities during the hospital stay and two months after discharge will be associated with poor clinical outcomes (readmission, death) and HFNC to acutely reduce sleep abnormalities.