Clinical Trials Logo

Hodgkin Lymphoma clinical trials

View clinical trials related to Hodgkin Lymphoma.

Filter by:

NCT ID: NCT00736320 Active, not recruiting - Hodgkin Lymphoma Clinical Trials

HD16 for Early Stage Hodgkin Lymphoma

HD16
Start date: November 2009
Phase: Phase 3
Study type: Interventional

This study is designed to test the non-inferiority of the experimental arm compared to the standard arm in terms of Progression free survival (PFS).

NCT ID: NCT00722865 Terminated - Hodgkin Lymphoma Clinical Trials

Avastin (Bevacizumab) Plus Adriamycin, Bleomycin, Vinblastine and Dacarbazine (ABVD) for Advanced Stage Hodgkin Lymphoma

Start date: September 2008
Phase: Phase 2
Study type: Interventional

The purpose of this research study is to determine the effectiveness and safety of Avastin when combined with standard chemotherapy for Hodgkin lymphoma. Avastin works differently than standard chemotherapy drugs. It is a type of protein called an antibody which binds to a substance called VEGF(Vascular Endothelial Growth Factor). VEGF stimulates the growth of the blood vessels that feed tumors and encourages tumor cell growth. VEGF is produced in excess by Hodgkin lymphoma cells, and is associated with a poorer outcome in patients with Hodgkin lymphoma. When the activity of VEGF is interrupted in multiple other cancer types, the blood vessels around the tumor cells die resulting in less nutrient delivery and death to the tumor. Blocking of VEGF has also been shown to improve delivery of chemotherapy to cancer cells, making standard chemotherapy work better. This trial uses Avastin in combination with standard chemotherapy with the goal of improving the cure rate over chemotherapy alone.

NCT ID: NCT00722488 Completed - Multiple Myeloma Clinical Trials

Study of MLN4924, a Novel Inhibitor of Nedd8 Activating Enzyme, in Adult Patients With Lymphoma or Multiple Myeloma

Start date: June 2008
Phase: Phase 1
Study type: Interventional

This is an open-label, multicenter, phase 1, dose escalation study of MLN4924 in adult patients with lymphoma or multiple myeloma. The patient population will consist of adults with a confirmed diagnosis of lymphoma (Waldenstrom's macroglobulinemia is permitted) or multiple myeloma that is relapsed and/or refractory after at least 2 prior standard chemotherapeutic regimens and for which no curative option exists. Patients in the expansion cohort, Schedule E, must specifically have Hodgkin lymphoma, DLBCL-GCB subtype, DLBCL-non-GCB subtype, or Mantle Cell Lymphoma (MCL). Patients with multiple myeloma will no longer be evaluated as a part of this study.

NCT ID: NCT00709592 Completed - Multiple Myeloma Clinical Trials

Reduced Intensity Total Body Irradiation + Thymoglobulin Followed by Allogeneic PBSCT

Start date: July 21, 2008
Phase: Phase 2
Study type: Interventional

One of two different doses of thymoglobulin will allow bone marrow engraftment with minimal Graft-versus-Host Disease and allow adequate immune response to allow the transplanted stem cells to replace the tumor cells.

NCT ID: NCT00606645 Completed - Hodgkin Lymphoma Clinical Trials

Safety Study of XmAb®2513 to Treat Hodgkin Lymphoma or Anaplastic Large Cell Lymphoma

Start date: December 2007
Phase: Phase 1
Study type: Interventional

An open-label, multi-dose, single-arm, Phase 1 dose escalation study of XmAb®2513 was conducted to define the MTD or recommended dose(s) for further study, to determine safety and tolerability, to characterize PK and immunogenicity, and to evaluate antitumor activity of XmAb2513 in patients with HL and ALCL (non-cutaneous) and who have received two or more prior therapeutic regimens. There will be no intra-patient dose escalation.

NCT ID: NCT00598624 Unknown status - Multiple Myeloma Clinical Trials

Clinical Trial to Evaluate the Safety and Efficacy of Treosulfan Based Conditioning Prior to Allogeneic Haematopoietic Stem Cell Transplantation (HSCT)

AlloTreo
Start date: September 2005
Phase: Phase 2
Study type: Interventional

This is a multicentric, non-randomized, non-controlled open-label phase II trial to evaluate the safety and efficacy of treosulfan in a combination regimen with fludarabine as conditioning therapy prior to allogeneic stem cell transplantation (SCT) in patients with haematological malignancies. The aim is to demonstrate a clinical benefit compared with historical data on intravenous busulfan (BusulfexTM, BusilvexTM), the only drug so far registered in the indication conditioning before allogeneic stem cell transplantation.

NCT ID: NCT00578539 Terminated - Leukemia Clinical Trials

T-Reg Cell Kinetics, Stem Cell Transplant, REGALE

REGALE
Start date: October 2007
Phase: N/A
Study type: Interventional

Patients have a type of blood cell disorder that is very hard to cure. We are now suggesting a treatment that might help patients live longer without disease than other treatment plans would. This treatment is known as a stem cell transplant. We believe this may help patients as it allows us to give much stronger doses of drugs and radiation to kill the diseased cells than we could give without the transplant. We also think that the healthy cells may help fight any diseased cells left after the transplant. Stem Cells are special "mother" cells that are found in the bone marrow (the spongy tissue inside bones), although some are also found in the bloodstream (peripheral blood). As they grow, they become either white blood cells which fight infection, red blood cells which carry oxygen and remove waste products from the organs and tissues or platelets, which enable the blood to clot. For the transplant to take place, we will collect these stem cells from a "donor" (a person who agrees to donate these cells) and give them to recipient. Patients do not have a sibling that is a perfect match, so the stem cells will come from a donor who is the best match available. This person may be a close relative or an unrelated person whose stem cells best "matches" the patients, and who agrees to donate stem cells. Before the transplant, two very strong drugs plus total body irradiation will be given to the patient (pre-conditioning). This treatment will kill most of the blood-forming cells in the bone marrow. We will then give the patient the healthy stem cells. Once these healthy stem cells are in the bloodstream they will move to the bone marrow (graft) and begin producing blood cells that will eventually mature into healthy red blood cells, white blood cells and platelets. This research study will also use CAMPATH-1H as a pre-treatment. CAMPATH-1H is an antibody against certain types of blood cells. CAMPATH-1H is important because it stays active in the body for a long time after infusion, which means it may work longer at preventing GvHD symptoms. The stem cell transplant described above is considered to be "standard" treatment. We would like to collect additional blood as described below in order to evaluate how the immune system is recovering. We are asking permission to draw blood from the patient so that we can measure the number of certain blood cells called T regulatory cells. T regulatory cells are special immune cells that can control or regulate the body's immune response. We want to determine whether T regulatory cells are important participants in graft versus host disease (GVHD), infection and relapse. In GVHD, certain cells from the donated marrow or blood (the graft) attack the body of the transplant patient (the host). GVHD can affect many different parts of the body. The skin, eyes, stomach and intestines are affected most often. GVHD can range from mild to life-threatening. We do not know whether T regulatory cells can modify these conditions. We want to measure these T regulatory cells and learn if these cells do influence these conditions. If we learn that T regulatory cells do affect these conditions, then it may be possible to modify these cells for the benefit of transplant patients.

NCT ID: NCT00576654 Active, not recruiting - Hodgkin Lymphoma Clinical Trials

Veliparib and Irinotecan Hydrochloride in Treating Patients With Cancer That Is Metastatic or Cannot Be Removed by Surgery

Start date: December 5, 2007
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of veliparib when given together with irinotecan hydrochloride in treating patients with cancer that has spread to other parts of the body or that cannot be removed by surgery. Irinotecan hydrochloride can kill cancer cells by damaging the deoxyribonucleic acid (DNA) that is needed for cancer cell survival and growth. Veliparib may block proteins that repair the damaged DNA and may help irinotecan hydrochloride to kill more tumor cells. Giving irinotecan hydrochloride together with veliparib may kill more cancer cells.

NCT ID: NCT00566696 Completed - Hodgkin Lymphoma Clinical Trials

Mismatched Family Member Donor Transplantation for Children and Young Adults With High Risk Hematological Malignancies

Start date: December 14, 2007
Phase: Phase 2
Study type: Interventional

Blood and marrow stem cell transplant has improved the outcome for patients with high-risk hematologic malignancies. However, most patients do not have an appropriate HLA (immune type) matched sibling donor available and/or are unable to identify an acceptable unrelated HLA matched donor through the registries in a timely manner. Another option is haploidentical transplant using a partially matched family member donor. Although haploidentical transplant has proven curative in many patients, this procedure has been hindered by significant complications, primarily regimen-related toxicity including GVHD and infection due to delayed immune reconstitution. These can, in part, be due to certain white blood cells in the graft called T cells. GVHD happens when the donor T cells recognize the body tissues of the patient (the host) are different and attack these cells. Although too many T cells increase the possibility of GVHD, too few may cause the recipient's immune system to reconstitute slowly or the graft to fail to grow, leaving the patient at high-risk for significant infection. For these reasons, a primary focus for researchers is to engineer the graft to provide a T cell dose that will reduce the risk for GVHD, yet provide a sufficient number of cells to facilitate immune reconstitution and graft integrity. Building on prior institutional trials, this study will provide patients with a haploidentical (HAPLO) graft engineered to specific T cell target values using the CliniMACS system. A reduced intensity, preparative regimen will be used in an effort to reduce regimen-related toxicity and mortality. The primary aim of the study is to help improve overall survival with haploidentical stem cell transplant in this high risk patient population by 1) limiting the complication of graft versus host disease (GVHD), 2) enhancing post-transplant immune reconstitution, and 3) reducing non-relapse mortality.

NCT ID: NCT00556452 Completed - Multiple Myeloma Clinical Trials

Study of Stem Cell Transplantation for Hematologic Malignancies Using Clofarabine and Busulfan Regimen

Start date: October 2007
Phase: Phase 1/Phase 2
Study type: Interventional

The goals of the study are (Phase I) to determine the appropriate dose for Clofarabine with Busulfan as a full-intensity conditioning (Clo/BU4 regimen) prior to transplant and then (Phase II) to investigate the safety and effectiveness of this regimen as a conditioning for stem cell transplant in the treatment of aggressive hematologic malignancies in subjects where more conventional approaches are failing.