View clinical trials related to High Altitude.
Filter by:The now widely used reference interval for pulse oxygen saturation of the neonate after 24 hours of birth has been developed relying on data from low altitude.It is not suitable for neonates at high altitude. At present, no reference interval has been established at high altitude, and the existing studies have many limitations. So this study was designed.
This is a prospective, multicenter, cohort study aiming to explore the cardiotoxicity of targeted therapy for HER-2 positive breast cancer patients who lives in high altitude area. One hundred and thirty two HER-2 positive breast cancer patients who will receive neoadjuvant, adjuvant, or palliative targeted therapy will be enrolled. The cardiotoxicity of targeted therapy will be observed and recorded during the treatment and one year after the end of treatment. The subjects will be stratified by age, baseline cardiac risk factors, and anthracyclines.
The predictive value of the hypoxia altitude simulation test (HAST) or other baseline values to predict altitude-related adverse health effects (ARAHE) is not established. To address this gap, the main goals of this investigation will be 1) to evaluate the diagnostic accuracy of the HAST in identifying individuals that will experience ARAHE during altitude travel and 2) to establish prediction models incorporating other commonly assessed clinical characteristics either alone or in combination with the HAST as predictors of ARAHE in altitude travelers. Hypotheses: In lowlanders with COPD, a PaO2 <6.6 kPa or another cutoff of PaO2 or SpO2 at the end of the HAST, at rest or during exertion and/or clinical variables including symptoms, pulmonary function indices, 6-min walk distance (6MWD), either alone or combined to a multivariable model, will predict ARAHE during a sojourn of 2 days at 3100m with accuracy greater than chance
Since the beginning of 2020, SARS-CoV-2 outbreak spread over the world, conducting in a pandemic state declared by the world health organization in March 2020. Conflicting data have been yet published regarding to the incidence rate of COVID-19 infection in altitude. Mainly based on analysis from national Peru database, some authors argued that COVID-19 disease, as well as case fatality rate was less frequent in altitude. However, epidemiological data are lacking regarding to the prevalence of COVID-19 in altitude, and more specially in high altitude. Aim of this cross-sectional study is to assess the prevalence of seroconversion for the SARS-CoV-2 in the population of La Rinconada, a mining town at 5,100 m, the highest city in the world.
Congenital heart diseases are among the most common congenital anomalies and occur with an incidence of approximately 8ınd12 / 1,000 live births worldwide. This figure does not cover minor lesions such as bicuspid aortic valves and small atrial or ventricular septal defects. Most of these defects do not need treatment or treatment is needed after infancy. Other defects are severe and usually require early treatment in the neonatal period. Critical congenital heart disease is defined as structural heart defects that are associated with hypoxia in the neonatal period and have significant morbidity and mortality potential in early life. Critical congenital heart disease is estimated to be ~3 in 1000 live births. It is estimated that 50% of congenital heart diseases are detected by prenatal ultrasound. Even if a standard neonatal examination is performed, 13 to 55% of patients with critical congenital heart disease can be discharged from the hospital without being diagnosed. Screening of infants with non-invasive oxygen saturation measurement has been proposed as an adjunct to early detection of critical congenital heart disease. The American Academy of Pediatrics, the American Cardiology Foundation and the American Heart Association have targeted 7 specific lesions for the pulse oximetry screening protocol: truncus arteriosus, transposition of the great arteries, tricuspid atresia, tetralogy of Fallot, total pulmonary venous return anomaly, hypoplastic left heart syndrome and pulmonary atresia. The reference values of peripheral perfusion (PPI) index has been established for normal newborns between 1 and 120 h of age. Lower PPI values than 0.70 may indicate illness. Including cut-off values for PPI in pulse-oximetry screening for duct dependent congenital heart disease is a promising tool for improving the detection of critical congenital heart disease with duct-dependent systemic circulation. We aimed to investigate screening critical congenital heart disease and also to establish normal values of oxygen saturation and perfusion index at high altitude.
The severity stratification criteria for acute respiratory distress syndrome (ARDS) in Xi'ning Qinghai province (mean altitude: 2200m) were clarified according to the oxygenation index (PaO2/FiO2).
Recent studies have reported that oxidation of exogenous carbohydrate is reduced under acute hypobaric hypoxic (high altitude; HA) conditions compared to normoxia (sea level; SL) in native lowlanders. However, the mechanisms by which HA suppresses exogenous carbohydrate oxidation are not known. This study will seek to confirm that acute HA exposure decreases exogenous carbohydrate oxidation during steady-state aerobic exercise compared to SL, and explore if the mechanism inhibiting plasma glucose uptake is insulin dependent or independent.
Ibuprofen is often taken by travelers to high altitude to treat the symptoms of acute mountain sickness such as headache and malaise. However, the blunting of inflammation by ibuprofen may slow the process of acclimatization to altitude, which relies on mediators of inflammation for adjustments in breathing. The study randomizes healthy subjects to receive ibuprofen or placebo and then ascend to altitude (12,500 feet). Blood cytokines and non-invasive measurements of blood and tissue oxygen levels will be made for 48 hours at altitude. The hypothesis being tested is that subjects receiving ibuprofen will have lower blood and tissue oxygen levels after 48 hours at altitude than will placebo subjects.
This study is aimed to assess the efficacy of combined treatment with two antihypertensive agents (telmisartan and nifedipine) in subjects with mild hypertension exposed to high altitude.